Chapter 3: Problem 1
In each case find the characteristic polynomial, eigenvalues, eigenvectors, and (if possible) an invertible matrix \(P\) such that \(P^{-1} A P\) is diagonal. a. \(A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]\) b. \(A=\left[\begin{array}{rr}2 & -4 \\ -1 & -1\end{array}\right]\) c. \(A=\left[\begin{array}{rrr}7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2\end{array}\right]\) d. \(A=\left[\begin{array}{rrr}1 & 1 & -3 \\ 2 & 0 & 6 \\ 1 & -1 & 5\end{array}\right]\) e. \(A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right]\) f. \(A=\left[\begin{array}{lll}0 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 0\end{array}\right]\) g. \(A=\left[\begin{array}{rrr}3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5\end{array}\right]\) h. \(A=\left[\begin{array}{rrr}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right]\) i. \(A=\left[\begin{array}{lll}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu\end{array}\right], \lambda \neq \mu\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.