Chapter 2: Problem 1
Let \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}\) be a linear transformation. a. Find \(T\left[\begin{array}{l}8 \\ 3 \\ 7\end{array}\right]\) if \(T\left[\begin{array}{r}1 \\ 0 \\\ -1\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right]\) and \(T\left[\begin{array}{l}2 \\ 1 \\\ 3\end{array}\right]=\left[\begin{array}{r}-1 \\ 0\end{array}\right]\). b. Find \(T\left[\begin{array}{r}5 \\ 6 \\ -13\end{array}\right]\) if \(T\left[\begin{array}{r}3 \\ 2 \\\ -1\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]\) and \(T\left[\begin{array}{l}2 \\ 0 \\\ 5\end{array}\right]=\left[\begin{array}{r}-1 \\ 2\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.