Chapter 2: Problem 1
For each of the following elementary matrices, describe the corresponding elementary row operation and write the inverse. a. \(E=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) b. \(E=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\) c. \(E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right]\) d. \(E=\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\) e. \(E=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\) f. \(E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5\end{array}\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.