Chapter 10: Problem 22
\(\begin{array}{ll}\text { Exercise } \mathbf{1 0 . 2 . 2 2} & \text { Let }\left\\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right\\} \text { be an orthonormal }\end{array}\) basis of \(V,\) and let \(\mathbf{v}=v_{1} \mathbf{f}_{1}+\cdots+v_{n} \mathbf{f}_{n}\) and \(\mathbf{w}=w_{1} \mathbf{f}_{1}+\cdots+w_{n} \mathbf{f}_{n} .\) Show that $$ \langle\mathbf{v}, \mathbf{w}\rangle=v_{1} w_{1}+\cdots+v_{n} w_{n} $$ and $$ \|\mathbf{v}\|^{2}=v_{1}^{2}+\cdots+v_{n}^{2} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.