Chapter 10: Problem 21
Let \(\left\\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right\\}\) be an orthogonal basis of \(V\). If \(\mathbf{v}\) and \(\mathbf{w}\) are in \(V\), show that $$ \langle\mathbf{v}, \mathbf{w}\rangle=\frac{\left\langle\mathbf{v}, \mathbf{f}_{1}\right\rangle\left\langle\mathbf{w}, \mathbf{f}_{1}\right\rangle}{\left\|\mathbf{f}_{1}\right\|^{2}}+\cdots+\frac{\left\langle\mathbf{v}, \mathbf{f}_{n}\right\rangle\left\langle\mathbf{w}, \mathbf{f}_{n}\right\rangle}{\left\|\mathbf{f}_{n}\right\|^{2}} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.