Chapter 10: Problem 14
Let \(B=\left\\{\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{n}\right\\}\) be an or- thonormal basis of an inner product space \(V\). Given \(T: V \rightarrow V,\) define \(T^{\prime}: V \rightarrow V\) by $$ \begin{aligned} T^{\prime}(\mathbf{v}) &=\left\langle\mathbf{v}, T\left(\mathbf{f}_{1}\right)\right\rangle \mathbf{f}_{1}+\left\langle\mathbf{v}, T\left(\mathbf{f}_{2}\right)\right\rangle \mathbf{f}_{2}+\cdots+\left\langle\mathbf{v}, T\left(\mathbf{f}_{n}\right)\right\rangle \mathbf{f}_{n} \\ &=\sum_{i=1}^{n}\left\langle\mathbf{v}, T\left(\mathbf{f}_{i}\right)\right\rangle \mathbf{f}_{i} \end{aligned} $$ a. Show that \((a T)^{\prime}=a T^{\prime}\). b. Show that \((S+T)^{\prime}=S^{\prime}+T^{\prime}\). c. Show that \(M_{B}\left(T^{\prime}\right)\) is the transpose of \(M_{B}(T)\). d. Show that \(\left(T^{\prime}\right)^{\prime}=T,\) using part (c). [Hint: \(M_{B}(S)=M_{B}(T)\) implies that \(\left.S=T .\right]\) e. Show that \((S T)^{\prime}=T^{\prime} S^{\prime}\), using part (c). f. Show that \(T\) is symmetric if and only if \(T=T^{\prime} .\) [Hint: Use the expansion theorem and Theorem 10.3.3.] \(\mathrm{g}\). Show that \(T+T^{\prime}\) and \(T T^{\prime}\) are symmetric, using parts (b) through (e). h. Show that \(T^{\prime}(\mathbf{v})\) is independent of the choice of orthonormal basis \(B\). [Hint: If \(D=\left\\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{n}\right\\}\) is also orthonormal, use the fact that \(\mathbf{f}_{i}=\sum_{j=1}^{n}\left\langle\mathbf{f}_{i}, \mathbf{g}_{j}\right\rangle \mathbf{g}_{j}\) for each \(\left.i .\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.