Chapter 10: Problem 1
\(V\) denotes a finite dimensional inner product space. Exercise \(\mathbf{1 0 . 4 . 1}\) Show that the following linear operators are isometries. $$ \text { a. } T: \mathbb{C} \rightarrow \mathbb{C} ; T(z)=\bar{z} ;\langle z, w\rangle=\operatorname{re}(z \bar{w}) $$ b. \(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} ; T\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) \(\quad=\left(a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}\right) ;\) dot product c. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22} ; \quad T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}c & d \\ b & a\end{array}\right]\) \(\quad\langle A, B\rangle=\operatorname{tr}\left(A B^{T}\right)\) d. \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; T(a, b, c)=\frac{1}{9}(2 a+2 b-c, 2 a+\) \(2 c-b, 2 b+2 c-a) ;\) dot product
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.