Chapter 10: Problem 1
In each case, show that \(T\) is symmetric by calculating \(M_{B}(T)\) for some orthonormal basis \(B\). a. \(T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\) \(T(a, b, c)=(a-2 b,-2 a+2 b+2 c, 2 b-c) ;\) dot prod- uct b. \(T: \mathbf{M}_{22} \rightarrow \mathbf{M}_{22}\) $$ T\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{cc} c-a & d-b \\ a+2 c & b+2 d \end{array}\right] $$ inner product: $$ \left\langle\left[\begin{array}{cc} x & y \\ z & w \end{array}\right],\left[\begin{array}{cc} x^{\prime} & y^{\prime} \\ z^{\prime} & w^{\prime} \end{array}\right]\right\rangle=x x^{\prime}+y y^{\prime}+z z^{\prime}+w w^{\prime} $$ c. \(T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2}\) $$ T\left(a+b x+c x^{2}\right)=(b+c)+(a+c) x+(a+b) x^{2} $$ inner product: $$ \left\langle a+b x+c x^{2}, a^{\prime}+b^{\prime} x+c^{\prime} x^{2}\right\rangle=a a^{\prime}+b b^{\prime}+c c^{\prime} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.