Chapter 1: Problem 5
For each of the following homogeneous systems, find a set of basic solutions and express the general solution as a linear combination of these basic solutions. a. \(\begin{aligned} x_{1}+2 x_{2}-x_{3}+2 x_{4}+x_{5} &=0 \\ x_{1}+2 x_{2}+2 x_{3}+x_{5} &=0 \\ 2 x_{1}+4 x_{2}-2 x_{3}+3 x_{4}+x_{5} &=0 \end{aligned}\) \(\begin{array}{rr}\text { b. } & x_{1}+2 x_{2}-x_{3}+x_{4}+x_{5}=0 \\ - & x_{1}-2 x_{2}+2 x_{3}+x_{5}=0 \\ - & x_{1}-2 x_{2}+3 x_{3}+x_{4}+3 x_{5}=0\end{array}\) c. \(\begin{aligned} x_{1}+x_{2}-x_{3}+2 x_{4}+x_{5} &=0 \\ x_{1}+2 x_{2}-x_{3}+x_{4}+x_{5} &=0 \\ 2 x_{1}+3 x_{2}-x_{3}+2 x_{4}+x_{5} &=0 \\ 4 x_{1}+5 x_{2}-2 x_{3}+5 x_{4}+2 x_{5} &=0 \end{aligned}\) d. \(\begin{aligned} x_{1}+x_{2}-2 x_{3}-2 x_{4}+2 x_{5} &=0 \\ 2 x_{1}+2 x_{2}-4 x_{3}-4 x_{4}+x_{5} &=0 \\ x_{1}-x_{2}+2 x_{3}+4 x_{4}+x_{5} &=0 \\\\-2 x_{1}-4 x_{2}+8 x_{3}+10 x_{4}+x_{5} &=0 \end{aligned}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.