Chapter 1: Problem 4
In each case, either express \(\mathbf{y}\) as a linear combination of \(\mathbf{a}_{1}, \mathbf{a}_{2},\) and \(\mathbf{a}_{3},\) or show that it is not such a linear combination. Here: $$ \begin{array}{l} \mathbf{a}_{1}=\left[\begin{array}{r} -1 \\ 3 \\ 0 \\ 1 \end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l} 3 \\ 1 \\ 2 \\ 0 \end{array}\right], & \text { and } \mathbf{a}_{3}=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \end{array}\right] \\ \text { a. } \mathbf{y}=\left[\begin{array}{l} 1 \\ 2 \\ 4 \\ 0 \end{array}\right] & \text { b. } \mathbf{y}=\left[\begin{array}{r} -1 \\ 9 \\ 2 \\ 6 \end{array}\right] \end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.