Chapter 4: Problem 1
Given \(A=\left[\begin{array}{rr}7 & -1 \\ 6 & 9\end{array}\right], B=\left[\begin{array}{rr}0 & 4 \\ 3 & -2\end{array}\right],\) and \(C=\left[\begin{array}{ll}8 & 3 \\ 6 & 1\end{array}\right],\) find (a) \(A+B\) (b) \(C-A\) \((c) 3 A\) \((d) 4 B+2 C\)
Short Answer
Expert verified
(a) \( \begin{bmatrix} 7 & 3 \\ 9 & 7 \end{bmatrix} \); (b) \( \begin{bmatrix} 1 & 4 \\ 0 & -8 \end{bmatrix} \); (c) \( \begin{bmatrix} 21 & -3 \\ 18 & 27 \end{bmatrix} \); (d) \( \begin{bmatrix} 16 & 22 \\ 24 & -6 \end{bmatrix} \)."
Step by step solution
01
Add Matrices A and B
To find \( A + B \), add the corresponding elements of matrices \( A \) and \( B \).\[A+B = \begin{bmatrix} 7 & -1 \ 6 & 9 \end{bmatrix} + \begin{bmatrix} 0 & 4 \ 3 & -2 \end{bmatrix} = \begin{bmatrix} 7+0 & -1+4 \ 6+3 & 9-2 \end{bmatrix} = \begin{bmatrix} 7 & 3 \ 9 & 7 \end{bmatrix}\]
02
Subtract Matrix A from C
To evaluate \( C - A \), subtract the corresponding elements of matrix \( A \) from \( C \).\[C-A = \begin{bmatrix} 8 & 3 \ 6 & 1 \end{bmatrix} - \begin{bmatrix} 7 & -1 \ 6 & 9 \end{bmatrix} = \begin{bmatrix} 8-7 & 3+1 \ 6-6 & 1-9 \end{bmatrix} = \begin{bmatrix} 1 & 4 \ 0 & -8 \end{bmatrix}\]
03
Multiply Matrix A by 3
Multiply each element of matrix \( A \) by 3 for \( 3A \).\[3A = 3 \times \begin{bmatrix} 7 & -1 \ 6 & 9 \end{bmatrix} = \begin{bmatrix} 3 \times 7 & 3 \times (-1) \ 3 \times 6 & 3 \times 9 \end{bmatrix} = \begin{bmatrix} 21 & -3 \ 18 & 27 \end{bmatrix}\]
04
Calculate 4B
Multiply each element of matrix \( B \) by 4.\[4B = 4 \times \begin{bmatrix} 0 & 4 \ 3 & -2 \end{bmatrix} = \begin{bmatrix} 4 \times 0 & 4 \times 4 \ 4 \times 3 & 4 \times (-2) \end{bmatrix} = \begin{bmatrix} 0 & 16 \ 12 & -8 \end{bmatrix}\]
05
Calculate 2C
Multiply each element of matrix \( C \) by 2.\[2C = 2 \times \begin{bmatrix} 8 & 3 \ 6 & 1 \end{bmatrix} = \begin{bmatrix} 2 \times 8 & 2 \times 3 \ 2 \times 6 & 2 \times 1 \end{bmatrix} = \begin{bmatrix} 16 & 6 \ 12 & 2 \end{bmatrix}\]
06
Add 4B and 2C
Add the matrices \( 4B \) and \( 2C \) from previous steps.\[4B + 2C = \begin{bmatrix} 0 & 16 \ 12 & -8 \end{bmatrix} + \begin{bmatrix} 16 & 6 \ 12 & 2 \end{bmatrix} = \begin{bmatrix} 0+16 & 16+6 \ 12+12 & -8+2 \end{bmatrix} = \begin{bmatrix} 16 & 22 \ 24 & -6 \end{bmatrix}\]
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Matrix Addition
To add two matrices, you simply combine their corresponding elements. It is crucial that the matrices have the same dimensions, meaning the same number of rows and columns. Let’s take matrices \(A\) and \(B\) as an example: \(A = \left[ \begin{array}{rr} 7 & -1 \ 6 & 9 \end{array} \right]\) and \(B = \left[ \begin{array}{rr} 0 & 4 \ 3 & -2 \end{array} \right]\).Adding these involves the following steps:
- Add the elements in the first row, first column: \(7 + 0 = 7\)
- Add the elements in the first row, second column: \(-1 + 4 = 3\)
- Add the elements in the second row, first column: \(6 + 3 = 9\)
- Add the elements in the second row, second column: \(9 + (-2) = 7\)
Matrix Subtraction
Matrix subtraction is similar to matrix addition, but instead of adding the corresponding elements, you subtract them. For example, to find \(C - A\) using matrices \(C = \left[ \begin{array}{rr} 8 & 3 \ 6 & 1 \end{array} \right]\) and \(A = \left[ \begin{array}{rr} 7 & -1 \ 6 & 9 \end{array} \right]\), you subtract the elements of \(A\) from \(C\):
- Subtract the elements in the first row, first column: \(8 - 7 = 1\)
- Subtract the elements in the first row, second column: \(3 - (-1) = 4\)
- Subtract the elements in the second row, first column: \(6 - 6 = 0\)
- Subtract the elements in the second row, second column: \(1 - 9 = -8\)
Scalar Multiplication
Scalar multiplication involves multiplying every entry in a matrix by a given scalar value. It is an easy yet powerful operation that scales the entire matrix by a uniform factor. Consider matrix \(A = \left[ \begin{array}{rr} 7 & -1 \ 6 & 9 \end{array} \right]\) and a scalar of 3.To find \(3A\):
- Multiply every element of \(A\) by 3:
- \(3 \times 7 = 21\)
- \(3 \times (-1) = -3\)
- \(3 \times 6 = 18\)
- \(3 \times 9 = 27\)
Matrix Operations
Matrix operations encompass several basic actions you can perform on matrices, including addition, subtraction, and scalar multiplication. These operations are foundational for more complex tasks in linear algebra, such as matrix multiplication, finding determinants, and solving systems of linear equations.
One key aspect of performing these operations is understanding how they interact:
- Addition and Subtraction: Both require matrices to have the same size, ensuring element-wise operations are meaningful.
- Scalar Multiplication: Scales every element of the matrix uniformly, independent of its size.