Chapter 13: Problem 4
\\[ \begin{array}{ll} \text { Minimize } & C=x_{1} \\ \text { subject to } & -x_{2}-\left(1-x_{1}\right)^{3} \geq 0 \end{array} \\] and \\[ x_{1}, x_{2} \geq 0 \\] Show that \((a)\) the optimal solution \(\left(x_{1}^{*}, x_{2}^{*}\right)=(1,0)\) does not satisfy the Kuhn-Tucker conditions, but \((b)\) by introducing a new muttiplier \(\lambda_{0} \geq 0,\) and modifying the Lagrangian function (13.15) to the form \\[ Z_{0}=\lambda_{0} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\sum_{j=1}^{m} \lambda_{1}\left[r_{i}-g^{j}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right] \\] the Kuhn-Tucker conditions can be satisfied at (1,0) . (Note: The Kuhn-Tucker conditions on the multipliers extend to only \(\left.\dot{\lambda}_{1}, \ldots, \lambda_{m}, \text { but not to } \lambda_{0} .\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.