Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 2

Revise the racquetball simulation to take shutouts into account. Your updated version should report for both players the number of wins, percentage of wins, number of shutouts, and percentage of wins that are shutouts.

Problem 4

Most sanctioned volleyball is now played using rally scoring. In this system, the team that wins a rally is awarded a point, even if they were not the serving team. Games are played to a score of \(25 .\) Design and implement a simulation of volleyball using rally scoring.

Problem 7

Craps is a dice game played at many casinos. A player rolls a pair of normal six-sided dice. If the initial roll is \(2,3,\) or \(12,\) the player loses. If the roll is 7 or \(11,\) the player wins. Any other initial roll causes the player to "roll for point." That is, the player keeps rolling the dice until either rolling a 7 or re-rolling the value of the initial roll. If the player re-rolls the initial value before rolling a \(7,\) it's a win. Rolling a 7 first is a loss. Write a program to simulate multiple games of craps and estimate the probability that the player wins. For example, if the player wins 249 out of 500 games, then the estimated probability of winning is \(249 / 500=0.498.\)

Problem 8

Blackjack (twenty-one) is a casino game played with cards. The goal of the game is to draw cards that total as close to 21 points as possible without going over. All face cards count as 10 points, aces count as 1 or 11 , and all other cards count their numeric value. The game is played against a dealer. The player tries to get closer to 21 (without going over) than the dealer. If the dealer busts (goes over 21), the player automatically wins (provided the player had not already busted). The dealer must always take cards according to a fixed set of rules. The dealer takes cards until he or she achieves a total of at least 17. If the dealer's hand contains an ace, it will be counted as 11 when that results in a total between 17 and 21 inclusive; otherwise, the ace is counted as 1 Write a program that simulates multiple games of blackjack and estimates the probability that the dealer will bust. Hints: Treat the deck of cards as infinite (casinos use a "shoe" containing many decks). You do not need to keep track of the cards in the hand, just the total so far (treating an ace as 1 ) and a bool variable hasAce that tells whether or not the hand contains an ace. A hand containing an ace should have 10 points added to the total exactly when doing so would produce a stopping total (something between 17 and 21 inclusive).

Problem 9

A blackjack dealer always starts with one card showing. It would be useful for a player to know the dealer's bust probability (see previous problem) for each possible starting value. Write a simulation program that runs multiple hands of blackjack for each possible starting value (ace-10) and estimates the probability that the dealer busts for each starting value.

Problem 10

Monte Carlo techniques can be used to estimate the value of pi. Suppose you have a round dartboard that just fits inside of a square cabinet. If you throw darts randomly, the proportion that hit the dartboard vs. those that hit the cabinet (in the corners not covered by the board) will be determined by the relative area of the dartboard and the cabinet. If \(n\) is the total number of darts randomly thrown (that land within the confines of the cabinet), and \(h\) is the number that hit the board, it is easy to show that \\[ \pi \approx 4\left(\frac{h}{n}\right) \\] Write a program that accepts the "number of darts" as an input and then performs a simulation to estimate \(\pi .\) Hint: You can use \(2 *\) random () -1 to generate the \(x\) and \(y\) coordinates of a random point inside a \(2 x 2\) square centered at \((0,0) .\) The point lies inside the inscribed circle if \(x^{2}+\) \\[ y^{2} \leq 1 \\]

Problem 11

Write a program that performs a simulation to estimate the probability of rolling five of a kind in a single roll of five six-sided dice.

Problem 12

A random walk is a particular kind of probabilistic simulation that models certain statistical systems such as the Brownian motion of molecules. You can think of a one-dimensional random walk in terms of coin flipping. Suppose you are standing on a very long straight sidewalk that extends both in front of and behind you. You flip a coin. If it comes up heads, you take a step forward; tails means to take a step backward. Suppose you take a random walk of \(n\) steps. On average, how many steps away from the starting point will you end up? Write a program to help you investigate this question.

Problem 13

Suppose you are doing a random walk (see previous problem) on the blocks of a city street. At each "step" you choose to walk one block (at random) either forward, backward, left or right. In \(n\) steps, how far do you expect to be from your starting point? Write a program to help answer this question.

Problem 15

(Advanced) Here is a puzzle problem that can be solved with either some fancy analytic geometry (calculus) or a (relatively) simple simulation. Suppose you are located at the exact center of a cube. If you could look all around you in every direction, each wall of the cube would occupy \(\frac{1}{6}\) of your field of vision. Suppose you move toward one of the walls so that you are now halfway between it and the center of the cube. What fraction of your field of vision is now taken up by the closest wall? Hint: Use a Monte Carlo simulation that repeatedly "looks" in a random direction and counts how many times it sees the wall.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks