Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 2

This exercise is another variation on "instrumenting" the recursive Fibonacci program to better understand its behavior. Write a program that counts how many times the fib function is called to compute fib(n) where \(n\) is a user input. Hint: To solve this problem, you need an accumulator variable whose value "persists" between calls to fib. You can do this by making the count an instance variable of an object. Create a FibCounter class with the following methods: init_(self) Creates a new FibCounter, setting its count instance variable to 0 getCount (self) Returns the value of count. fib (self,n) Recursive function to compute the \(n\) th Fibonacci number. It increments the count each time it is called. resetCount(self) Sets the count back to 0.

Problem 3

A palindrome is a sentence that contains the same sequence of letters reading it either forwards or backwards. A classic example is "Able was I, ere I saw Elba." Write a recursive function that detects whether a string is a palindrome. The basic idea is to check that the first and last letters of the string are the same letter; if they are, then the entire string is a palindrome if everything between those letters is a palindrome. There are a couple of special cases to check for. If either the first or last character of the string is not a letter, you can check to see if the rest of the string is a palindrome with that character removed. Also, when you compare letters, make sure that you do it in a case-insensitive way. Use your function in a program that prompts a user for a phrase and then tells whether or not it is a palindrome. Here's another classic for testing: "A man, a plan, a canal, Panama!"

Problem 4

Write and test a recursive function max to find the largest number in a list. The max is the larger of the first item and the max of all the other items.

Problem 5

Computer scientists and mathematicians often use numbering systems other than base \(10 .\) Write a program that allows a user to enter a number and a base and then prints out the digits of the number in the new base. Use a recursive function base Conversion(num, base) to print the digits. Hint: Consider base \(10 .\) To get the rightmost digit of a base 10 number, simply look at the remainder after dividing by \(10 .\) For example, \(153 \% 10\) is 3. To get the remaining digits, you repeat the process on \(15,\) which is just \(153 / /\) 10. This same process works for any base. The only problem is that we get the digits in reverse order (right to left). The base case for the recursion occurs when num is less than base and the output is simply num. In the general case, the function (recursively) prints the digits of num // base and then prints num \% base. You should put a space between successive outputs, since bases greater than 10 will print out with multi-character "digits." For example, baseConversion(1234, 16) should print 4 132.

Problem 7

In mathematics, \(C_{k}^{n}\) denotes the number of different ways that \(k\) things can be selected from among \(n\) different choices. For example, if you are choosing among six desserts and are allowed to take two, the number of different combinations you could choose is \(C_{2}^{6} .\) Here's one formula to compute this value: \\[ C_{k}^{n}=\frac{n !}{k !(n-k) !} \\] This value also gives rise to an interesting recursion: \\[ C_{k}^{n}=C_{k-1}^{n-1}+C_{k}^{n-1} \\] Write both an iterative and a recursive function to compute combinations and compare the efficiency of your two solutions. Hints: When \(k=1\) \\[ C_{k}^{n}=n \text { and when } n

Problem 8

Some interesting geometric curves can be described recursively. One famous example is the Koch curve. It is a curve that can be infinitely long in a finite amount of space. It can also be used to generate pretty pictures. The Koch curve is described in terms of "levels" or "degrees." The Koch curve of degree 0 is just a straight line segment. A first degree curve is formed by placing a "bump" in the middle of the line segment (see Figure 13.6 ). The original segment has been divided into four, each of which is \(\frac{1}{3}\) the length of the original. The bump rises at 60 degrees, so it forms two sides of an equilateral triangle. To get a second-degree curve, you put a bump in each of the line segments of the first-degree curve. Successive curves are constructed by placing bumps on each segment of the previous curve. You can draw interesting pictures by "Kochizing" the sides of a polygon. Figure 13.7 shows the result of applying a fourth-degree curve to the sides of an equilateral triangle. This is often called a "Koch snowflake." You are to write a program to draw a snowflake. Think of drawing a Koch curve as if you were giving instructions to a turtle. The turtle always knows where it currently sits and what direction it is facing. To draw a Koch curve of a given length and degree, you might use an algorithm like this: Algorithm Koch(Turtle, length, degree): if degree \(==0\) Tell the turtle to draw for length steps else: length1 \(=\) length/3 degree1 \(=\) degree -1 Koch(Turtle, length1, degree1) Tell the turtle to turn left 60 degrees Koch (Turtle, length1, degree1) Tell the turtle to turn right 120 degrees Koch(Turtle, length1, degree1) Tell the turtle to turn left 60 degrees Koch(Turtle, length1, degree1) Implement this algorithm with a Turtle class that contains instance variables location (a Point) and Direction (a float) and methods such as moveTo (somePoint), draw(length), and turn(degrees). If you maintain direction as an angle in radians, the point you are going to can easily be computed from your current location. Just use \(\mathrm{dx}=\) length \(*\) \(\cos (\text { direction })\) and \(\mathrm{dy}=\operatorname{length} * \sin (\text { direction })\)

Problem 10

Automated spell-checkers are used to analyze documents and locate words that might be misspelled. These programs work by comparing each word in the document to a large dictionary (in the non-Python sense) of words. Any word not found in the dictionary, it is flagged as potentially incorrect. Write a program to perform spell-checking on a text file. To do this, you will need to get a large file of English words in alphabetical order. If you have a Unix or Linux system available, you might poke around for a file called words, usually located in /usr/dict or /usr/share/dict. Otherwise, a quick search on the Internet should tum up something usable. Your program should prompt for a file co analyze and then try to look up every word in the file using binary search. If a word is not found in the dictionary, print it on the screen as potentially incorrect.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks