Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Compute the 5×5per-units zero-, positive-, and negative-sequence bus impedance matrices for the power system given in Problem 9.8. Use a base of 100MVAand 15kVin the zone of generator.

Short Answer

Expert verified

The value of positive-sequence bus impedance matrix is,

Zbus1=j1.63971.3621.09750.83310.27771.3625.28464.25843.23231.07741.09754.25847.26885.51731.83910.83313.23235.51737.80232.60080.27771.07741.83912.60084.2003p.u.

The value of negative-sequence bus impedance matrix is,

Zbus2=j1.63761.3541.08390.81380.24661.3545.25364.20563.15760.95691.08394.20567.17875.38991.63330.81383.15765.38997.62212.30970.24660.95691.63332.30973.7302 p.u.

The value of zero-sequence bus impedance matrix is,

Zbus0=j2.92872.1461.84791.549802.1465.23634.5093.781601.84794.5095.52254.631601.54983.78164.63165.48170000010 p.u.

Step by step solution

01

Write the given data from the question.

As reference of problem 9.8.

Thevalue of base MVA is.100 MVA

The value of voltage base zone of generator100 MVA is15 kV.

02

Determine the formula of sequence impedance bus matrix.

Write the formula of positive-sequence bus impedance matrix

Zbus1=1Ybus1 …… (1)

Here, Ybus1is per-unit positive-sequence bus admittance matrix.

Write the formula of negative-sequence bus impedance matrix

Zbus2=1Ybus2 …… (2)

Here,role="math" localid="1656476644681" Ybus2is per-unit negative-sequence bus admittance matrix.

Write the formula of zero-sequence bus impedance matrix

Zbus0=1Ybus0 …… (3)

Here,Ybus0 is per-unit zero-sequence bus admittance matrix.

03

(a)Determine thevalue of positive sequence, negative sequence and zero sequence bus impedance matrix of the system.

Determine the per unit positive sequence reactance for generator1.

X1=X''d=0.21210210050=0.576 p.u.

Determine the per-unit negative sequence reactance for generator.localid="1656480615528" 1

X2=0.576 p.u.

Determine the per-unit zero sequence reactance for generator.localid="1656480597938" 1

width="172">X0=0.11210210050=0.288 p.u.

Determine the per-unit positive sequence reactance for generatorlocalid="1656480541504" 2.

localid="1656480524282" X1=X'd=0.2​ p.u.

Determine the per-unit negative sequence reactance for generatorlocalid="1656480644009" 2.

localid="1656480625284" X2=0.23 p.u.

Determine the per-unit zero sequence reactance for generatorlocalid="1656480656079" 2.

localid="1656480666096" X0=0.1 p.u.

Determine the per-unit reactance for transformerlocalid="1656480677563" T1.

localid="1656480688195" XT1=0.1010050=0.2 p.u.

Determine the per unit reactance for transformer.localid="1656480698312" T2

localid="1656480710583" XT2=0.10 p.u. --

Determine the base impedance value.

localid="1656480943690" Zbase=138×10321000×106=190.44Ω

Determine the per-unit positive and negative quantities for lines.

localid="1656480953551" X1=X2=40190.44=0.210 p.u.

Determine the per-unit zero sequence reactance for line.

localid="1656480962740" X0=100190.44=0.5251 p.u.

Draw the circuit diagram of positive sequence network of the system.

The circuit's positive-sequence bus admittance matrix is shown below.

localid="1656480970935" Ybus1=j0.7760.20000.20.410.210000.210.420.210000.210.310.10000.10.3  p.u.

Determine the per unit positive sequence bus impedance matrix of the system.

localid="1656480981802" Zbus1=1Ybus1

Here,localid="1656480991001" Ybus1is positive-sequence admittance matrix.

Substitute localid="1656481000247" j0.7760.20000.20.410.210000.210.420.210000.210.310.10000.10.3  p.u.forlocalid="1656481011500" Ybus1into above equation.

localid="1656481023177" Zbus1=1j0.7760.20000.20.410.210000.210.420.210000.210.310.10000.10.3  p.u.=j1.63971.3621.09750.83310.27771.3625.28464.25843.23231.07741.09754.25847.26885.51731.83910.83313.23235.51737.80232.60080.27771.07741.83912.60084.2003 p.u.

Therefore, the value of per unit positive-sequence bus impedance matrix is,

localid="1656481033610" Zbus1=j1.63971.3621.09750.83310.27771.3625.28464.25843.23231.07741.09754.25847.26885.51731.83910.83313.23235.51737.80232.60080.27771.07741.83912.60084.2003 p.u.

Determine the per unit negative sequence bus impedance matrix of the system.

localid="1656481043179" Zbus2=1Ybus2

The circuit's negative-sequence bus admittance matrix is shown below.

localid="1656481052033" Ybus2=j0.7760.20000.20.410.210000.210.420.210000.210.310.10000.10.33 p.u.

localid="1656481065986" Zbus2=1j0.7760.20000.20.410.210000.210.420.210000.210.310.10000.10.33=j1.63761.3541.08390.81380.24661.3545.25364.20563.15760.95691.08394.20567.17875.38991.63330.81383.15765.38997.62212.30970.24660.95691.63332.30973.7302 p.u.

Therefore, the value of per unit negative-sequence bus impedance matrix is,

localid="1656481078881" Zbus2=j1.63761.3541.08390.81380.24661.3545.25364.20563.15760.95691.08394.20567.17875.38991.63330.81383.15765.38997.62212.30970.24660.95691.63332.30973.7302 p.u.

The circuit's zero-sequence bus admittance matrix is shown below.

Ybus0=1j0.4880.20000.20.72510.52510000.52511.05020.52510000.52510.6261000000.1 p.u.

Zbus0=1Ybus0

Here,Ybus0is zero-sequence bus admittance matrix.

Substitute1j0.4880.20000.20.72510.52510000.52511.05020.52510000.52510.6261000000.1 p.u.for Ybus0into above equation.

Zbus0=11j0.4880.20000.20.72510.52510000.52511.05020.52510000.52510.6261000000.1 p.u.=j2.92872.1461.84791.549802.1465.23634.5093.781601.84794.5095.52254.631601.54983.78164.63165.48170000010 p.u.

Therefore, the value of per unit zero-sequence bus impedance matrix is,

Zbus0=j2.92872.1461.84791.549802.1465.23634.5093.781601.84794.5095.52254.631601.54983.78164.63165.48170000010 p.u.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free