Calculate the complex power delivered to the load in terms of symmetrical component.
Substitute 47.78<57.63V, for Vo , 112.70<359.97V for V, 61.62/45.88V
for V2 1.562-21.06" A, for 's, 5.164285.92" A for " and 5.162 -28.16" A for
l2 into equation (1).
S = 3[(47.78257.630) (1.562-21.060) +(112.70_359.97.)(5.16_285.92)
+(61.62/45.88 V)(5.162-28.16)]
S = 3[(47.78257.63)(1.56_21.060)+(112.702359.97.)(5.164-285.929)]
+(61.62/45.88- V)(5.16_28.16)]
S =3 [74.54/78.69 +581.99/74.05+317.96274.059]
S =2922.77 74.40 KVA
Calculate the complex power by adding up complex power of three phase
Substitute 200/25" V for Va , 100/-155- V for V. 802100 V for 2
10.892313.03" A for ' 6.932122.27localid="1654851917637" A for " and 0.8/32.69localid="1654851923291" A for 12 into
equation(2).
S =[(200_25) (10.89<313.03) +(100<-155.)(6.932122.27)
+(802100- V)(0.8<32.690)]
S=[(200425.)(10.892 -313.03)+ (1002 -155)(6.932-122.27)+(804100- V)(0.82-32.69)]
S = 21782-288.03+693localid="1654851928302" 277.27localid="1654851932241" +64.67.31
S =2925.25/74.40KVA
Hence, the power deliver to load with using symmetrical component
2922.77 274.40localid="1654851945636" KVA and by adding up complex power of three phase is
2925.25/74.40localid="1654851950509" KVA which almost same.