Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Perform the indicated matrix multiplications in (8.2.21) and verify the sequence impedances given by (8.2.22) through (8.2.27).

Short Answer

Expert verified

Answer

The diagonal sequence impedances is,

Z1=Z2Z113Zaa+Zbb+Zcc-Zab-Zac-ZbcZ0=13Zaa+Zbb+Zcc+2Zbc+2Zzc+2Zbc

The off diagonal sequence impedances. Is,

Z01=Z20Z01=13Zaa+aZbb+z2Zcc-a2Zab-aZbc-ZbcZ02=Z10Z02=13Zaa+aZbb+a2Zcc-a2Zab-aZbc-Zbc

Further sequence impedances are,

Z12=13Zaa+z2Zbb+2aZab+2a2Zac+2ZbcZ21=13Zaa+aZbb+a2Zcc+2a2Zab+2aZac+2Zbc

The sequence impedances are verified.

Step by step solution

01

Write the given data from the question:

The sequence Impedance matrix is,

Zs=Z0Z01Z02Z10Z1Z12Z20Z21Z2

The phase impedance matrix is,

Zp=ZaaZabZacZabZbbZbcZacZcbZcc

Consider the matrixA.

A=1111a2a1aa2

The inverse of the matrix A,

A-1=131111aa21a2a

02

Write the equation that is need to be verified.

From the equation 8.2.19 from the text book.

Zs=A-1ZpA …… (1)

03

Perform the matrix multiplication.

Zs=131111aa21a2aZaaZabZacZabZbbZbcZacZcbZcc1111a2a1aa2Zs=131111aa21a2aZaa+Zab+ZacZaa+a2Zab+aZzcZaa+aZzb+a2ZacZab+Zbb+ZbcZab+a2Zbb+aZbcAzb+aZbb+a2ZbcZac+Zcb+ZccZac+a2Zcb+aZccZac+aZzb+a2ZccZs=13Zaa+Zab+Zac+Zab+Zbb+Zbc+Zac+Zbc+ZccZaa+a2Zab+aZac-Zab+a2Zbb+aZbc-Zac+a2Zab-aZccZaa+aZab+a2Zac+Zab+aZbb+a2Zbc+Zac+aZcb+a2ZccZaa+Zab+Zac+aZab+Zbb+Zbc+a2ac+Zcb+ZccZaa-a2Zab-aZzc-aZac-a2Zab-aZac-a2Zac+a2Zcb-aZccZaa+aZab+a2Zac+aZab+aZbb+a2Zbc+a2Zac+aZcb+a2ZccZaa+Zab+Zac+a2Zab+Zbb+Zbc+aZac+Zcb+ZccZaa+a2Zab+aZac-a2Zab-a2Zbb-aZbc-aZac-a2Zcb+aZccZaa+aZab+a2Zac+a2Zab+aZbb+a2Zbc+aZac+aZcb+a2Zccuncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('650664ce9dba717...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">

Substitute 131111aa21a2afor A-1,ZaaZabZacZabZbbZbcZacZcbZccfor Zpand 1111a2a1aa2for A into equation (1).

Substitute 0 for into above matrix.

By comparing the above matrix with the sequence impedance matrix. The diagonal sequence impedances.

The off diagonal sequence impedances are,

Further sequence impedances are,

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A Y-connected synchronous generator rated 20MVAat 13.8kVhas a positive-sequence reactance of j2.38V, negative-sequence reactance of j3.33V, and zero-sequence reactance of j0.95V. The generator neutral is solidly grounded. With the generator operating unloaded at rated voltage, a so-called single line-to-ground fault occurs at the machine terminals. During this fault, the line-to-ground voltages at the generator terminals are Vag=0,Vbg=8.071102.25° and Vcg=8.071102.25°. Determine the sequence components of the generator fault currents and the generator fault currents. Draw a phasor diagram of the prefault and postfault generator terminal voltages. (Note: For this fault, the sequence components of the generator fault currents are all equal to each other.)

Using the operatora=1120°, evaluate the following in polar form: (a)(a-1)/(1+a-a2), (b)(a2+a+j)/(ja+a2), (c) (1+a)(1+a2) and (d) (a-a2)(a2-1).

The sequence componentsV0,V1, and V2can be expressed in terms of phase components Va,Vb, and Vc .

V0=_______________;V1=_______________; V2=_______________

Given the line-to-ground voltageVag=2800°,Vbg=250-110°, and Vcg=290130°, calculate (a) the sequence components of the line to-ground voltages, denoted VLg0, VLg1and VLg2; (b) line-to-line voltages VLL0,VLL1, and VLL2; and (c) sequence components of the line-to-line voltages VLL0=0,VLL1,and VLL2. Also, verifies the following general relation: VLL0=0,VLL1=3VLg1,andVLL=3VLg2-30°volts.

Let an unbalanced, three-phase, Y-connected load (with phase impedances of Za,Zband Zc) be connected to a balanced three-phase supply, resulting in phase voltages of Va,Vb, and Vcacross the corresponding phase impedances.

Choosing Vab as the reference, show that

Vab,0=0;Vab,1=3Va,1ej30°;Vab,2=3Va,2e-j30°

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free