Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The two parallel lines in Example 3.13 supply a balanced load with a load current of 1-30°per unit. Determine the real and reactive power supplied to the load bus from each parallel line with (a) no regulating transformer, (b) the transformer in Example 3.13(a), and (c) the phase-angle-regulating transformer in Example Assume that the voltage at bus abcis adjusted so that the voltage at bus a'b'c'remains constant at 10°per unit. Also assume positive sequence. Comment on the effects of the regulating transformer.

Short Answer

Expert verified

a)The real and reactive power supplied to the load bus by LineL1 andL2 are0.480+j0.277 pu and 0.386+j0.233 pu, respectively.

(b)The real and reactive power supplied to the load bus by LineL2 and L1are0.4915+j0.1802 puand 0.3745+j0.3198 pu,respectively. The voltage magnitude regulation transformer increases the reactive and real power supplied to load bus by the lineL1 .

(c) The real and reactive power supplied to the load bus by Line L2andL1 are0.3585+j0.2876 pu and 0.5075+j0.2124 pu0.5075+j0.2124 purespectively. The phase angle regulating transformer increase the real power of the lineL1 with the small change in the reactive power.

Step by step solution

01

Write the given data from the question. 

The load currentIL=130° A.

The voltage ata'b'c'V1=10° pu.

The reactance of the line, L1.XL1=j0.25 pu

The reactance of the lineXL2=j0.20 pu, .

02

 Step 2: Determine the formulas to calculate the real and reactive power supplied to the load bus by each parallel line.

The equation for complex power supplied by lineL1and L2 is as follows:

PLoad+jQLoad=V1IL*…… (1)

Here,PLoadis the real power,and QLoadis the reactive power supplied to the load bus.

Theequationto calculate the line current isL2as follows:

IL2=XL1XL1+XL2IL…… (2)

Theequationto calculate the real and reactive power supplied to load bus by lineL2 is givenas follows:

PL2+jQL2=V1IL2*…… (3)

Here,PL2is the real power,and QL2is the reactive power supplied to the load bus by lineL2 .

Theequationto calculate the real and reactive power supplied to load bus by line L1 is givenas follows:

PL1+jQL1=PLoad+jQLoadPL2+jQL2…… (4)

HerePL1,is the real power,and QL1is the reactive power supplied to the load bus by lineL2.

The admittance matrix is given as follows:

IIL=Y11Y12Y21Y22VV1…… (5)

Here, Y11,Y12,Y21andY22are the admittance of the lines.

03

Determine the real and reactive power supplied by each parallel line with no regulation transformer.

(a)

Draw the circuit of the system.

Calculate the real and reactive power supplied to the load bus.

Substitute10° pu for V1and 130° AforILinto equation (1).

PLoad+jQLoad=10°130°*PLoad+jQLoad=130°PLoad+jQLoad=0.866+j0.5 pu

Calculate the current for line L1.

Substitutej0.25 puforXL1,j0.20 puforXL2,and 130° AforILinto equation (2).

IL2=0.250.25+0.20130°IL2=0.250.45130°IL2=0.55530° pu

Calculate the real and the reactive power supplied to load bus by lineL2.

Substitute 10° puforV1and 0.55530° pufor IL1into equation (3).

PL2+jQL2=10°0.55530°*PL2+jQL2=0.55530°PL2+jQL2=0.480+j0.277 pu

Calculate the real and reactive power supplied to the load bus by lineL1.

Substitute 0.480+j0.277 puforPL2+jQL2and 0.866+j0.5 pufor PLoad+jQLoadinto equation (4).

PL1+jQL1=0.866+j0.50.480+j0.277PL1+jQL1=0.386+j0.233 pu

Hence, the real and reactive power supplied to the load bus by LineL2 and L1are 0.480+j0.277 puand0.386+j0.233 pu , respectively.

04

Step 4:Determine the real and reactive power supplied by each parallel line with line no regulation transformer.

(b)

The2×2admittance matrix.

From example 3.13,

.I130°=j9j8.810j8.810j8.628V10°

Solve the second equation.

130°=j8.810Vj9130°V=8.62890130°8.81090°V=0.866+j9.1288.81090V=1.045.42° pu

Calculate the currentIL2from the figure shown in the step1.

IL2=VV1jXL1

Substitute 1.045.42° pufor , forV1, and j0.20 pufor XL1into the above equation.

IL2=1.045.42°°10° puj0.20IL2=0.104869.710.2090°IL2=0.52420.29° pu

Calculate the real and reactive power supplied to the load by lineL2.

Substitute0.52420.29° pu for IL2and 10° pu for V1into equation (3).

PL2+jQL2=10°0.52420.29°*PL2+jQL2=0.52420.29°PL2+jQL2=0.4915+j0.1802 pu

Calculate the real and reactive power supplied to load by the line L1.

Substitute0.474+j0.228 pufor PL2+jQL2and 0.866+j0.5 puforPLoad+jQLoad into equation (4).

PL1+jQL1=0.866+j0.50.4915+j0.1802PL1+jQL1=0.3745+j0.3198 pu

Hence, the real and reactive power supplied to the load bus by LineL2 and L1are 0.4915+j0.1802 puand 0.3745+j0.3198 pu, respectively. The voltage magnitude regulation transformer increases the reactive and real power supplied to load bus by the line L1.

05

Determine the real and reactive power supplied to the load bus with a phase angle regulation transformer

(c)

The admittance the example 3.13(b)is calculated as follows:

Y21=0.2093+J8.8945 puY22=j9 pu

The voltage Vcan be calculated asfollows:

V=Y22V1ILoadY21

Substitute0.2093+J8.8945 pufor Y21,j9 pufor Y22,10° puforV1, and130° Afor ILin the above equation.

V=j910° pu130° A0.2093+J8.8945V=9.5395.21°8.9991.33°V=1.063.89° pu

Calculate the currentIL2from the figure shown in step1.

IL2=VV1jXL1

Substitute1.063.89° puforV,10° puforV1, and j0.20 puforXL1into the above equation.

IL2=1.063.89° pu°10° puj0.20IL2=0.091951.240.2090°IL2=0.459538.76° pu

Calculate the real and reactive power supplied to the load by line L2.

Substitute0.459538.76° puforIL2and10° puforV1into equation (3).

PL2+jQL2=10°0.459538.76°*PL2+jQL2=0.459538.76°PL2+jQL2=0.3585+j0.2876 pu

Calculate the real and reactive power supplied to load by the line L1.

Substitute0.3585+j0.2876 puforPL2+jQL2and 0.866+j0.5 pufor PLoad+jQLoadinto equation (4).

PL1+jQL1=0.866+j0.50.3585+j0.2876PL1+jQL1=0.5075+j0.2124 pu

Hence, the real and reactive power supplied to the load bus by Line L2and L1are 0.3585+j0.2876 puand0.5075+j0.2124 pu respectively. The phase angle regulating transformer increase the real power of the lineL1 with the small change in the reactive power.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three single-phase two-winding transformers, each rated 25MVA,34.5/13.8kV, are connected to form a three-phase -bank. Balanced positive-sequence voltages are applied to the high-voltage terminals, and a balanced, resistive Y load connected to the low-voltage terminals absorbs 75MWat13.8kV. If one of the single-phase transformers is removed (resulting in an open- connection) and the balanced load is simultaneously reduced to 43.3MW( 57.7% of the original value), determine (a) the load voltages Van,Vbn,andVcn (b) load currents Ia,Ib,andIc and (c) the supplied by each of the remaining two transformers. Are balanced voltages still applied to the load? Is the open-transformer overloaded?

The motorsM1and M2of Problem 3.45 have inputs of 120 MWand 60 MW, respectively, at 13.2 kV, and both operate at unity power factor. Determine the generator terminal voltage and voltage regulation of the line. Neglect transformer phase shifts.

For an ideal transformer, the efficiency is

(a) 0%

(b) 100%

(c) 50%

A single-phase 10kVA,2300/230volt,60-Hztwo-winding distribution transformer is connected as an autotransformer to step up the voltage from 2300 to2530volts. (a) Draw a schematic diagram of this arrangement, showing all voltages and currents when delivering full load at rated voltage (b) Find the rating of the autotransformer if the winding currents and voltages are not to exceed the rated values as a two-winding transformer. How much of this kVA rating is transformed by magnetic induction? (c) The following data are obtained from tests carried out on the transformer When it is connected as a two-winding transformer:

Open-circuit test with the low-voltage terminals excited:
Applied voltagelocalid="1656747038872" =230V , input current localid="1656747042832" =4.5A, input power localid="1656747046762" =70W

Short-circuit test with the high-voltage terminals excited:
Applied voltage localid="1656747050183" =120V, input current localid="1656747053614" =4.5A, input power localid="1656747057853" =240W

Based on the data, compute the efficiency of the autotransformer corresponding to full load, rated voltage, andlocalid="1656747062178" 0.8 power factor lagging. Comment on Why the efficiency is higher as an autotransformer than as a two-winding transformer.

A single-phase 50kVA, 2400/240V, 60Hz distribution transformer has a 1Ω equivalent leakage reactance and a 500Ωmagnetizing reactance referred to the high-voltage side. If rated voltage is applied to the high-voltage winding, calculate the open-circuit secondary voltage. Neglect I2R and Gc2V losses. Assume equal series leakage reactances for the primary and the referred secondary.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free