Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two three-phase generators supply a three-phase load through separate three-phase lines The load absorbs30KWat 0.8power factor lagging. The line impedance is (1.4+j1.6)Ωper phase between generator G1and the load, and (0.8+j1)n per phase between generator and the load. If generator G2suppliesat15KWat0.8power factor lagging, With a terminal voltage of 460Vline-to-line, determine (a) the voltage at the load terminals, (b) the voltage at the terminals of generator and (c) the real and reactive power supplied by generator G2. Assume balanced

Short Answer

Expert verified

(a) The line-to-line voltage at the load terminal is375.7-2.73.

(b) The line-to-line voltage at the terminal of generator is G2is449.650.63V.

(c) The real and reactive power supplied by the generator are andSG2are20.12kW.

Step by step solution

01

Calculate the voltage at the load terminal.

(a)

The line-to-line voltage of generator 1,

vLL=460V

The phase voltage of generator 1,

VG1=46030

The single line diagram can be drawn asvLL=460V

The expression for the real power

PG1=3VLLIL(p.f)

IL=PG13VLLp.f-cos-1p.f

Substitute the values and solve as

IL=15×1033×460×0.8-cos-10.8IL=23.53-36.87

Apply the Kirchhoff’s voltage law in the left side of the loop,

VL=VG1-1.4+j1.6IG1

Substitute the values and solve as

VL=460301.4+j1.623.53-36.87VL=265.580-(2.21648.81)23.53-36.87VL=265.580-50.0211.94VL=216.9-2.73

The line-to-line voltage at the load terminal

VLLL=3VLVLLL=3×216.9-2.73VLLL=375.72.73

Hence, the line-to-line voltage at the load terminal is 375.72.73.

02

Calculate the voltage at the terminal of the generator.

(b)

The apparent power can be calculated as

S=PLp.fS=30×1030.8S=37.5×103VA

The complex power can be calculated as

SL=37.5×103cos-10.8SL=37.536.87kVA

The complex power can be calculated as

SL=3VLLLI'LI'L=SL3VLLL

Substitute the values and solve as

I*L=37.5×10336.873×375.7-2.73I*L=57.6239.6I*L=57.62-39.6A

The current through the generator can be calculated as

IG2=IL-IG1IG2=57.63-39.6-23.5336.87IG2=34.12-41.49A

Apply the Kirchhoff’s voltage law in right hand side loop,

VG2=VL+0.8+j1VG2VG2=216.9-2.73-0.8+j134.12-41.49VG2=216.9-2.73-1.2851.3434.12-41.49VG2=216.9-2.73-43.679.45

Solve further as

VG2=259.61-0.63V

The line-to-line voltage at the terminal of generator

VG2LL=3VG2VG2LL=3×259.610.63VVG2LL=449.65-0.63V

Hence the line-to-line voltage at the terminal of generator G2is 449.65-0.63V.

03

Calculate the real and reactive power supplied by generatorG2 .

(c)

The complex power supplied by the generator G2can be calculated as

SG2=3VG2LLIG2*SG2=3×449.65-0.63×34.1441.48SG2=26.640.86

Convert the power into cartesian form

SG2=20.12+j17.kVA

The real power supplied by the generatorG2

P=ReSG2P=20.12KW

The reactive power supplied by the generatorG2

Q=ImSG2Q=17.4kvar

Hence, the real and reactive power supplied by the generator SG2are 20.12kWand 17.4kvar.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let a 100 V sinusoidal source be connected to a series combination of a 3Ω resistor, an8Ω inductor, and a4Ω capacitor. (a) Draw the circuit diagram. (b) Compute the series impedance. (c) Determine the current Idelivered by the source. Is the current lagging or leading the source voltage? What is the power factor of this circuit?

Let a 100 V sinusoidal source be connected to a series combination of a3Ω resistor, an 8Ωinductor, and a capacitor. (a) Draw the circuit diagram. (b) Compute the series impedance. (c) Determine the current Idelivered by the source. Is the current lagging or leading the source voltage? What is the power factor of this circuit?

Repeat Problem 2.12 if the resistor and capacitor are connected in series.

A three-phase line with an impedance of(0.2+j1.0)Ωfeeds three balanced three-phase loads connected in parallel.

Load I: Absorbs a total of 150kW and 120Kvar :

Load 2: Delta connected with an impedance oflocalid="1655120783137" (150-j48)Ω/:

Load 3: 120KVA at 0.6PF leading:

If the line-to-neutral voltage at the load end of the line is 2000 v ( rms ) , determine the magnitude of the line-to-line voltage at the source end of the line.

A balanced three-phase load is connected to a 4.16kV, three-phase, four Wire, grounded-wye dedicated distribution feeder. The load can be modeled by an impedance of ZL=(4.7+j9)Ω/phasewye-connected. The impedance of the phase conductors is (0.3+j1)Ω. Determine the following by using the phase to neutral voltage as a reference and assume positive phase sequence:

(a) Line currents for phases A, B and C.

(b) Line-to-neutral voltages for all three phases at the load.

(c) Apparent, active, and reactive power dissipated per phase, and for all

three phases in the load.

(d) Active power losses per phase and for all three phases in the phase

conductors.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free