Chapter 22: Problem 11
Let \(F\) be a field of characteristic zero and \(a, b \in F[x]\) nonzero and coprime. (i) Let \(\gamma \in F\) and \(p \in F[x]\) be an irreducible factor of \(\operatorname{gcd}\left(b, a-\gamma b^{\prime}\right)\). Prove that \(p^2 \nmid b\), and conclude that the gcd is squarefree. (ii) Show that \(\operatorname{gcd}\left(b, a-\gamma_1 b^{\prime}\right)\) and \(\operatorname{gcd}\left(b, a-\gamma_2 b^{\prime}\right)\) are coprime if \(\gamma_1, \gamma_2 \in F\) are distinct. (iii) Consider the following variant of Algorithm 22.14. ALGORITHM \(22.22\) Almkvist \& Zeilberger's multiple of integration denominator. Input: Relative prime polynomials \(a, b \in F[x]\) with \(b \neq 0\) monic. Output: A monic polynomial \(V \in F[x]\) such that for any coprime \(u, v \in F[x]\), equation (5) implies that \(v\) divides \(V\). 1\. \(R \longleftarrow \operatorname{res}_x\left(b, a-y b^{\prime}\right), \quad d \longleftarrow \max \\{i \in \mathbb{N}: i=0\) or \(R(i)=0\\}\) if \(d=0\) then return 1 2\. \(a_0 \longleftarrow a, \quad b_0 \longleftarrow b\) for \(i=1, \ldots, d\) do $$ H_i \longleftarrow \operatorname{god}\left(b_{i-1}, a_{i-1}-b_{i-1}^{\prime}\right), \quad a_i \longleftarrow \frac{a_{i-1}-b_{i-1}^{\prime}}{H_i}, \quad b_i \longleftarrow \frac{b_{i-1}}{H_i} $$ 3\. return \(H_1 H_2^2 \ldots H_d^d\) Show that \(H_i=\operatorname{gcd}\left(b, a-i b^{\prime}\right)\) for all \(i\) and conclude that the algorithm returns the same result as Algorithm 22.14. (iv) Trace Algorithm \(22.22\) on the input from Example 22.16.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.