Chapter 4: Problem 6
Investigate whether the following pairs of matrices are controllable. 1\. \(A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), B=\left(\begin{array}{l}1 \\ 1\end{array}\right)\), 2\. \(A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right), B=\left(\begin{array}{l}0 \\ 1\end{array}\right)\) 9\. \(A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{l}1 \\ 2\end{array}\right)\) 4\. \(A=\left(\begin{array}{ll}a_{1} & 0 \\ a_{2} & 0\end{array}\right), B=\left(\begin{array}{l}1 \\ 1\end{array}\right)\) 5\. \(A=\left(\begin{array}{cc}0 & l \\ -l & 0\end{array}\right), B=\left(\begin{array}{l}1 \\ 0\end{array}\right)\) 6\. \(A=\left(\begin{array}{lll}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right), B=\left(\begin{array}{l}b_{1} \\ b_{2} \\\ b_{3}\end{array}\right)\) 7\. \(A=\left(\begin{array}{lll}\lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right), B=\left(\begin{array}{l}b_{1} \\ b_{2} \\\ b_{3}\end{array}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.