Chapter 3: Problem 4
A tennis tournarnsnt has 342 players. A singlo match imolves 2 players. The winner of a match will play the winner of a match in the next round, wheress losers are eliminated from the toumament. The 2 players who have won all previous rounds play in the final game, and the wirner wins the tournament. What is the total number of matches needed to determine the winner? a. Here is one algorithm to answer this question. Compute \(342 / 2=171\) to get the number of pairs (matches) in the first round, which results in 171 winners to go on to the second round. Compute \(171 / 2=85\) with 1 left over, which results in 85 matches in the second round and 85 winners, plus the 1 left over, to go on to the third round. For the third round compute \(86 / 2=43,50\) the third round has 43 matches, and so on. The total number of matches is \(171+85+43+\ldots\) Finish this process to find the total number of matches. b. Here is another algorithm to solve this problem, Each match results in exactly one loser, so there must be the same number of matches as losers in the tournament. Compute the total number of losers in the entire tournament. (Hint: This isf't really a computation; it is a one-sentence argument.) c. What is your opinion on the relative clarity, elegance, and efficiency of the two algorithms?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.