Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let B and C be languages over =0,1. Define

B¬C={w^IB|forsomey^IC,stringswandycontainequalnumbersof1s}

Show that the class of regular languages is closed under the1operation.

Short Answer

Expert verified

The class of regular languages closed underBC operation.

Step by step solution

01

To explain regular languages

B and C are the two languages and

BC={wB|forsomeyC,stringswandycontainequalnumbersof1s}over the alphabet.

So, it is given that B and C are regular languages

02

To Recognizes the language

LetMB be the DFA that recognizes the language B

MB=QB,,δB,qB,FB

Let Mcbe the DFA that recognizes the language C

MC=QC,,δC,qC,FC

To construct an NFA which recognizes BC.

Construction of NFA to recognize BC.

LetN=Q,,δ,q,F be the NFA.

Therefore, class of regular languages closed underBC operation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let Σ2be the same as in Problem 1.33. Consider each row to be a binary number and let D={wΣ*2|the top row of w is a larger number than is the bottom row}. For example, 00101100D, but 000111006D. How that D is regular.

If A is a set of natural numbers and k is a natural number greater than 1, let

Bk(A)={w|wistherepresentationinbasekofsomenumberinA}.

Here, we do not allow leading 0s in the representation of a number. For example ,B2({3,5})={11,101}and B3({3,5})={10,12}.Give an example of a set A for which B2(A)is regular butB2(A) is not regular. Prove that your example works.

Give regular expressions generating the languages of Exercise 1.6.

a. {begins with a 1 and ends with a 0}

b. { w|wcontains at least three 1s}

c. { w|wcontains the substring 0101 (i.e., w = x0101y for some x and y)}

d. { w|whas length at least 3 and its third symbol is a 0}

e. { w|wstarts with 0 and has odd length, or starts with 1 and has even length}

f. { w|wdoesn’t contain the substring 110}

g. { w|the length of wis at most 5}

h. { w|wis any string except 11 and 111}

i. { w|every odd position of w is a 1 }

j. { contains at least two 0s and at most one 1}

k. {ε,0}

l. { w|wcontains an even number of 0 s, or contains exactly two 1s}

m. The empty set

n. All strings except the empty string

Use the pumping lemma to show that the following languages arenot regulara.   A1={0η1η2η|n0}b.   A2={ωωω|ω{a,b}*}c.   A3={a2η|n0}(Here,a2ηmeansastringof2ηa's.)a.   A1={0η1η2η|n0}b.   A2={ωωω|ω{a,b}*}c.   A3={a2η|n0}(Here,a2ηmeansastringof2ηa's.)

We define the avoids operation for languages A and B to be

AavoidsB={w|wAandwdoesntcontainanystringinBasasubstring}.

Prove that the class of regular languages is closed under the avoids operation.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free