Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For any string w=w1,w2,···,wn, the reverse of w, written wR , is the string w in reverse order,wn···w2w1. For any language A,letAR=wR|wA.Show that if A is regular, so is AR.

Short Answer

Expert verified

It means thatwA ifwRAR

Step by step solution

01

To Convert the state for M

It recognizes A,

We have built a NFA for as follows:

Convert the start state for M as the only accept state qaccept'for M'.

Add a new start state qo'for M', and from qo', add -transitions to M'each state of corresponding to accept states of M.

02

To Accept the State M

Here qo'=qaccept'

For any w*there is a path following w from the start state to an accept sate in M if there is a path following wRfrom qo'to qaccept'in M'

That means that wAif wRAR.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The pumping lemma says that every regular language has a pumping length P , such that every string in the language can be pumped if it has length p or more. If P is a pumping length for language A, so is any length p'pThe minimum pumping length for A is the smallest p that is a pumping length for A . For example, if A=01*, the minimum pumping length is 2.The reason is that the string s=0is in A and has length 1 yet s cannot be pumped; but any string A in of length 2 or more contains a 1 and hence can be pumped by dividing it so that x=0,y=1,andzis the rest. For each of the following languages, give the minimum pumping length and justify your answer.

a).0001*b).0*1*c).0010*1*d).0*1+0+1*10*1

role="math" localid="1660797009042" e).(01)*f).g).1*01*01*h).10(11*0)*

i).1011j).*

A finite state transducer (FST) is a type of deterministic finite automaton whose output is a string and not just accept or reject. The following are state diagrams of finite state transducers T1andT2.

Each transition of an FST is labeled with two symbols, one designating the input symbol for that transition and the other designating the output symbol. The two symbols are written with a slash, I, separating them. In T1, the transition from q1toq2has input symbol 2 and output symbol 1. Some transitions may have multiple input–output pairs, such as the transition in T1from q1to itself. When an FST computes on an input string w, it takes the input symbols w1···wnone by one and, starting at the start state, follows the transitions by matching the input labels with the sequence of symbols w1···wn=w. Every time it goes along a transition, it outputs the corresponding output symbol. For example, on input 2212011, machine T1enters the sequence of states q1,q2,q2,q2,q2,q1,q1,q1and produces output 1111000. On input abbb, T2outputs 1011. Give the sequence of states entered and the output produced in each of the following parts.

a. T1on input011

b. T1on input211

c. T1on input121

d. T1on input0202

e. T2on input b

f. T2on input bbab

g. T2on input bbbbbb

h. T2on input localid="1663158267545" ε

Let Σ2 be the same as in Problem 1.33. Consider the top and bottom rows to be strings of 0s and 1s, and letE={w*2| the bottom row of w is the reverse of the top row of w}. Show that is E not regular.

Let A/B={ω|ωχAforsomeχB}.Show that if is regular and is any language, thenA/B is regular.

Let M=(Q,Σ,δ,q0,F)be a DFA and let be a state of Mcalled its “home”. A synchronizing sequence for M and h is a string s∈Σ∗whereδ(q,s)=hforeveryqQ. (Here we have extended to strings, so thatδ(q,s) equals the state where M ends up when M starts at state q and reads input s .) Say that M is synchronizable if it has a synchronizing sequence for some state h . Prove that if M is a k-state synchronizable DFA, then it has a synchronizing sequence of length at mostk3 . Can you improve upon this bound?

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free