Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Recall the Post Correspondence Problem that we defined in Section 5.2 and its associated language PCP. Show that PCP is decidable relative to ATM.

Short Answer

Expert verified

The given statement is proved.

Step by step solution

01

Turing Recognizable

A language L is said to be Turing Recognizable if and only if there exist any Turing Machine (TM) which recognize it i.e., Turing Machine halt and accept strings belong to language L and will reject or not halt on the input strings that doesn’t belong to language L.

02

Proof of the statement.

Post Corresponding Problem is an undecidable problem where we have two list A and B such that

A=a1,a2,a3..anandB=b1,b2,b3bn

then there exist set of integers I=i1,i2,i3, such that:

a1,a2,a3..an=b1,b2,b3bn

To find above relation, we try to find all possible combination of I=i1,i2,i3

To provePCP is decidable relative to ATM, we will use contradict of this. Means, we will assume PCP is undecidable relative to ATMbut our undecidable relative is not related to oracle.

Now we are clear we will first found a match that will find our Post Corresponding Problem.

Here it is sure that if Turing Machine is not related to concept of oracle then this will be undecidable rather than Post Corresponding Problem being decidable relative to ATM . As ATMis associated to concept of oracle.

This concludes that Post Corresponding Problem is decidable relative to ATM.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give a counterexample to show that the following construction fails to prove Theorem 1.49, the closure of the class of regular languages under the star operationLet N1=Q1,Σ,δ1,q1,F1 recognize . Construct N=Q1,Σ,δ,q1,F as follows. Nis supposed to recognize A*1.

a. The states of Nare the states of N1.

b. The start state ofN is the same as the start state ofN1 .

c. . F=q1F1.The accept states are the old accept states plus its start state.

d. Defineδso that for any and any aΣε, δq,a=(δ1q,aq6F1ora6=εδ1q,aq1qF1anda=ε

A queue automaton is like a push-down automaton except that the stack is replaced by a queue. A queue is a tape allowing symbols to be written only on the left-hand end and read only at the right-hand end. Each write operation (we’ll call it a push) adds a symbol to the left-hand end of the queue and each read operation (we’ll call it a pull) reads and removes a symbol at the right-hand end. As with a PDA, the input is placed on a separate read-only input tape, and the head on the input tape can move only from left to right. The input tape contains a cell with a blank symbol following the input, so that the end of the input can be detected. A queue automaton accepts its input by entering a special accept state at any time. Show that a language can be recognized by a deterministic queue automaton iff the language is Turing-recognizable.

Prove that there exists an undecidable subset of 1*.

In the fixed-point version of the recursion theorem (Theorem 6.8), let the transformation t be a function that interchanges the states qacceptandqreject in Turing machine descriptions. Give an example of a fixed point for t.

Show that the stringthe girl touches the boy with the flowerhas two different leftmost derivations in grammar G2 on page 103. Describe in English the two different meanings of this sentence.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free