Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

Solve the system of equations using Gaussian elimination row operations $$ \left\\{\begin{aligned} -x_{1}+x_{2}-2 x_{3} &=1 \\ x_{1}+x_{2}+2 x_{3} &=-1 \\ x_{1}+2 x_{2}+x_{3} &=-2 \end{aligned}\right. $$ To document your work in Octave, click "select all," then "copy" under the edit menu, and paste your work into a Word or text document. After you have the row echelon form, solve the system by hand on paper, using backward substitution.

Problem 3

Consider the system of linear equations \(A \mathbf{x}=\mathbf{b},\) where $$ A=\left[\begin{array}{rrr} 1 & -3 & 5 \\ 2 & -4 & 3 \\ 0 & 1 & -1 \end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{r} 1 \\ -1 \\ 3 \end{array}\right] $$ Solve the system using left division. Then, construct an augmented matrix \(B\) and use rref to row-reduce it. Compare the results.

Problem 6

Octave can easily solve large problems that we would never consider working by hand. Let's try constructing and solving a larger system of equations. We can use the command \(\operatorname{rand}(\mathrm{m}, \mathrm{n})\) to generate an \(m \times n\) matrix with entries uniformly distributed from the interval \((0,1) .\) If we want integer entries, we can multiply by 10 and use the floor function to chop off the decimal. Use this command to generate an augmented matrix \(M\) for a system of 25 equations in 25 unknowns: $$ \gg \mathrm{M}=\text { floor }(10 * \text { rand }(25,26)) ; $$ Note the semicolon. This suppresses the output to the screen, since the matrix is now too large to display conveniently. Solve the system of equations using rref and/or left division and save the solution as a column vector \(\mathbf{x}\).

Problem 7

Consider the following data. \begin{tabular}{c|cccc} \(x\) & 2 & 3 & 5 & 8 \\ \hline\(y\) & 3 & 4 & 4 & 5 \end{tabular} (a) Set up and solve the normal equations by hand to find the line of best fit, in \(y=m x+b\) form, for the given data. Check your answer using polyfit \((\mathrm{x}, \mathrm{y}, 1)\). (b) Compare to the solution found using Octave's left division operation directly on the relevant (inconsistent) system: $$ \left[\begin{array}{ll} 2 & 1 \\ 3 & 1 \\ 5 & 1 \\ 8 & 1 \end{array}\right] \cdot\left[\begin{array}{l} m \\ b \end{array}\right]=\left[\begin{array}{l} 3 \\ 4 \\ 4 \\ 5 \end{array}\right] $$ (c) Plot a graph showing the data points and the regression line.

Problem 8

Use following commands to generate a randomized sample of 21 evenly spaced points from \(x=0\) to \(x=200\) with a high degree of linear correlation. We start with a line through the origin with random slope \(m,\) then add some "noise" to each \(y\) -value. $$ \begin{array}{l} \gg \mathrm{m}=2 * \mathrm{rand}-1 \\ \gg \mathrm{x}=[0: 10: 200]^{\prime} \\ \gg \mathrm{y}=\mathrm{m} * \mathrm{x}+10 * \operatorname{rand}(\operatorname{size}(\mathrm{x})) \end{array} $$

Problem 9

On July 4,2006 , during a launch of the space shuttle Discovery, NASA recorded the following altitude data \(^{3}\). $$ \begin{array}{r|r} \text { Time (s) } & \text { Altitude (ft) } \\ \hline 0 & 7 \\ 10 & 938 \\ 20 & 4,160 \\ 30 & 9,872 \\ 40 & 17,635 \\ 50 & 26,969 \\ 60 & 37,746 \\ 70 & 50,548 \\ 80 & 66,033 \\ 90 & 83,966 \\ 100 & 103,911 \\ 110 & 125,512 \\ 120 & 147,411 \end{array} $$ (a) Find the quadratic polynomial that best fits this data. Use Octave to set- up and solve the normal equations. After you have the equations set up, solve using either the rref command or the left-division operator. (b) Plot the best-fitting parabola together with the given data points. Save or print the plot. Your plot should have labeled axes and include a legend. (c) Use the first and second derivatives of the quadratic altitude model from part (a) to determine models for the vertical component of the velocity and acceleration of the shuttle. Estimate the velocity two minutes into the flight.

Problem 10

There are many situations where the polynomial models we have considered so far are not appropriate. However, sometimes we can use a simple transformation to linearize the data. For example, if the points \((x, y)\) lie on an exponential curve, then the points \((x, \ln y)\) should lie on a straight line. To see this, assume that \(y=C e^{k x}\) and take the logarithm of both sides of the equation: $$ \begin{aligned} y &=C e^{k x} \\ \ln y &=\ln C e^{k x} \\ &=\ln C+\ln e^{k x} \\ &=k x+\ln C \end{aligned} $$ Make the change of variables \(Y=\ln y\) and \(A=\ln C\). Then we have a linear function of the form $$ Y=k x+A $$ We can find the line that best fits the \((x, Y)\) -data and then use inverse transformations to obtain the exponential model we need: $$ y=C e^{k x} $$ where $$ C=e^{A} $$ Consider the following world population data \(^{4}\) : $$ \begin{array}{c|c|c} x=\text { year } & y=\text { population (in millions) } & Y=\ln y \\ \hline 1900 & 1650 & 7.4085 \\ 1910 & 1750 & \\ 1920 & 1860 & \\ 1930 & 2070 & \\ 1940 & 2300 & \\ 1950 & 2525 & \\ 1960 & 3018 & \\ 1970 & 3682 & \\ 1980 & 4440 & \\ 1990 & 5310 & \\ 2000 & 6127 & \\ 2010 & 6930 & \\ & \end{array} $$ (a) Fill in the blanks in the table with the values for \(\ln y\). Note that in Octave, the \(\log (\mathrm{x})\) command is used for the natural logarithm. Make a scatter plot of \(x\) vs. \(Y\). This is called a semi-log plot. Is the trend approximately linear? (b) Use the polyfit function to find the best-fitting line for the \((x, Y)\) -data and add the graph of the line to your scatter plot from part (a). Save or print the plot. Your plot should have labeled axes and include a legend. Note that the vertical axis is the logarithm of the population. Give the plot the title "Semi-log plot." (c) Use the data from part (b) to determine the exponential model \(y=C e^{k x}\). Plot the original data and the exponential function on the same set of axes. Save or print the plot. Your plot should have labeled axes and include a legend. Give the plot the title "Exponential plot." (d) Use the model from part (c) to estimate the date when the global population reached 7 billion. (e) Make a projection about when the global population will reach 10 billion.

Problem 11

Create a data matrix that corresponds to a picture of your own design, containing six or more edges. Plot it. (a) Rotate the image through \(45^{\circ}\) and \(180^{\circ}\). Plot the original image and the two rotations on the same axes. Include a legend. (b) Expand your figure by a factor of \(2,\) then reflect the expanded figure in the \(x\) -axis. Plot the original image, the expanded image, and the reflected expanded image on the same axes. Include a legend.

Problem 12

Let \(f(x)=x^{2},\) where \(-3 \leq x \leq 3 .\) Use a rotation matrix to rotate the graph of the function through an angle of \(90^{\circ} .\) Plot the original and rotated graphs on the same axes. Include a legend.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Computer Science Textbooks