Consider the three transactions \(T_{1}, T_{2},\) and \(T_{3},\) and the schedules
\(S_{1}\) and \(S_{2}\) given below. Draw the serializability (precedence) graphs
for \(S_{1}\) and \(S_{2},\) and state whether each schedule is serializable or
not. If a schedule is serializable, write down the equivalent serial
schedule(s).
$$\begin{array}{l}
T_{1}: r_{1}(X) ; r_{1}(Z) ; w_{1}(X) \\
T_{2}: r_{2}(Z) ; r_{2}(Y) ; w_{2}(Z) ; w_{2}(Y) \\
T_{3}: r_{3}(X) ; r_{3}(Y) ; w_{3}(Y) ; \\
S_{1}: r_{1}(X) ; r_{2}(Z) ; r_{1}(Z) ; r_{3}(X) ; r_{3}(Y) ; w_{1}(X) ;
w_{3}(Y) ; r_{2}(Y) ; w_{2}(Z) ; w_{2}(Y) \\
S_{2}: r_{1}(X) ; r_{2}(Z) ; r_{3}(X) ; r_{1}(Z) ; r_{2}(Y) ; r_{3}(Y) ;
w_{1}(X) ; w_{2}(Z) ; w_{3}(Y) ; w_{2}(Y)
\end{array}$$