Chapter 13: Problem 39
Suppose we have a sequential (ordered) file of 100,000 records where each record is 240 bytes. Assume that \(B=2400\) bytes, \(s=16 \mathrm{ms}, r d=8.3 \mathrm{ms},\) and \(b t t=0.8 \mathrm{ms}\) Suppose we want to make \(X\) independent random record reads from the file. We could make \(X\) random block reads or we could perform one exhaustive read of the entire file looking for those \(X\) records. The question is to decide when it would be more efficient to perform one exhaustive read of the entire file than to perform \(x\) individual random reads. That is, what is the value for \(X\) when an exhaustive read of the file is more efficient than random \(X\) reads? Develop this as a function of \(X\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.