Chapter 10: Problem 18
Prove or disprove the following inference rules for functional dependencies. A proof can be made either by a proof argument or by using inference rules IR1 through IR3. A disproof should be performed by demonstrating a relation instance that satisfies the conditions and functional dependencies in the left-hand side of the inference rule but does not satisfy the dependencies in the right-hand side. a. \(\\{W \rightarrow Y, X \rightarrow Z\\} \vDash\\{W X \rightarrow Y\\}\) b. \(\\{X \rightarrow Y\\}\) and \(Y \supseteq Z \vDash\\{X \rightarrow Z\\}\) ?. \(\\{X \rightarrow Y, X \rightarrow W, W Y \rightarrow Z\\} \vDash\\{X \rightarrow Z\\}\) d. \(\\{X Y \rightarrow Z, Y \rightarrow W\\} \vDash\\{X W \rightarrow Z\\}\) e. \(\\{X \rightarrow Z, Y \rightarrow Z\\} \vDash\\{X \rightarrow Y\\}\) f. \(\quad\\{X \rightarrow Y, X Y \rightarrow Z\\} \vDash\\{X \rightarrow Z\\}\) \(\mathrm{g} .\\{X \rightarrow Y, Z \rightarrow W\\} \vDash\\{X Z \rightarrow Y W\\}\) h. \(\\{X Y \rightarrow Z, Z \rightarrow X\\} \vDash\\{Z \rightarrow Y\\}\) ¡. \(\\{X \rightarrow Y, Y \rightarrow Z\\} \vDash\\{X \rightarrow Y Z\\}\) j. \(\quad\\{X Y \rightarrow Z, Z \rightarrow W\\} \vDash\\{X \rightarrow W\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.