Chapter 2: Problem 17
Write a divide-and-conquer algorithm for the Towers of Hanoi problem. The Towers of Hanoi problem consists of three pegs and \(n\) disks of different sizes. The object is to move the disks that are stacked, in decreasing order of their size, on one of the three pegs to a new peg using the third one as a temporary peg. The problem should be solved according to the following rules: (1) when a disk is moved, it must be placed on one of the three pegs; (2) only one disk may be moved at a time, and it must be the top disk on one of the pegs; and (3) a larger disk may never be placed on top of a smaller disk. a. Show for your algorithm that \(S(n)=2^{n}-1\). (Here \(S(n)\) denotes the number of steps (moves), given an input of \(n\) disks.) b. Prove that any other algorithm takes at least as many moves as given in part (a).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.