Chapter 1: Problem 34
Algorithm 1.7 (nth Fibonacci Term, Iterative) is clearly linear in \(n,\) but is it a linear-time algorithm? In Section 1.3 .1 we defined the input size as the size of the input. In the case of the \(nth\) Fibonacci term, \(n\) is the input, and the number of bits it takes to encode \(n\) could be used as the input size. Using this measure the size of 64 is \(\lg 64=6,\) and the size of 1024 is \(\lg 1024=\) 10\. Show that Algorithm 1.7 is exponential-time in terms of its input size. Show further that any algorithm for computing the \(nth\) Fibonacci term must be an exponential-time algorithm because the size of the output is exponential in the input size. See Section 9.2 for a related discussion of the input size.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.