Chapter 8: Problem 12
Two manufacturing companies \(M_{1}\) and \(M_{2}\) produce a certain unit that is used in an assembly plant. Company \(M_{1}\) is larger than \(M_{2}\), and it supplies the plant with twice as many units per day as \(M_{2}\) does. \(M_{1}\) also produces more defects than \(M_{2}\). Because of past experience with these suppliers, it is felt that \(10 \%\) of \(M_{1}\) 's units have some defect, whereas only \(5 \%\) of \(M_{2}\) 's units are defective. Now, suppose that a unit is selected at random from a bin in the assembly plant. (a) What is the probability that the unit was supplied by company \(M_{1} ?\) (b) What is the probability that the unit is defective? (c) What is the probability that the unit was supplied by \(M_{1}\) if the unit is defective?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.