Chapter 8: Problem 10
Suppose our manufacturing company purchases a certain part from three different suppliers \(S_{1}, S_{2},\) and \(S_{3}\). Supplier \(S_{1}\) provides \(40 \%\) of our parts, and suppliers \(S_{2}\) and \(S_{3}\) provide \(35 \%\) and \(25 \%,\) respectively. Furthermore, \(20 \%\) of the parts shipped by \(S_{1}\) are defective, \(10 \%\) of the parts shipped by \(S_{2}\) are defective, and \(5 \%\) of the parts from \(S_{3}\) are defective. Now, suppose an employee at our company chooses a part at random. (a) What is the probability that the part is good? (b) If the part is good, what is the probability that it was shipped by \(S_{1} ?\) (c) If the part is defective, what is the probability that it was shipped by \(S_{1} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.