Chapter 4: Problem 22
Let \(X\) be a set, and let \(\mathcal{F}_{X}\) be the set of all \(I-I\) functions from \(X\) onto \(X\). We have two operations on functions in \(\mathcal{F}_{X}: \circ\) and -1 . Prove the following statements called group axioms. (If the results are already proved in the book, note where to find the proofs.) (a) For all \(F, G \in \mathcal{F}_{X}, F \circ G \in \mathcal{F}\). (b) For all \(F, G, H \in \mathcal{F}_{X},(F \circ G) \circ H=F \circ(G \circ H)\) (Associative Law). (c) For all \(F \in \mathcal{F}_{X}, F \circ I d_{X}=I d_{X} \circ F=F\). (Identity Axiom). (d) For all \(F \in \mathcal{F}_{X}\), there exists an \(F^{-1}\) such that \(F \circ F^{-1}=F^{-1} \circ F=I d_{X}\) (Inverse Axiom).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.