Chapter 4: Problem 18
Let \(A\) and \(B\) be sets with \(A_{1}, A_{2} \subseteq A,\) and let \(F: A \rightarrow B\). Let \(F\left(A_{i}\right)\) denote \(\mid F(x)\) : \(\left.x \in A_{i}\right\\}\) for \(i=1,2\). Show that: (a) If \(A_{1} \subseteq A_{2},\) then \(F\left(A_{1}\right) \subseteq F\left(A_{2}\right)\). (b) \(F\left(A_{1} \cup A_{2}\right)=F\left(A_{1}\right) \cup F\left(A_{2}\right)\). (c) \(F\left(A_{1} \cap A_{2}\right) \subseteq F\left(A_{1}\right) \cap F\left(A_{2}\right)\). (d) \(F\left(A_{1}\right)-F\left(A_{2}\right) \subseteq F\left(A_{1}-A_{2}\right)\). (e) \(A_{1} \subseteq F^{-1}\left(F\left(A_{1}\right)\right)\). (f) Find an example in which \(A_{1} \subset A_{2}\) but \(F\left(A_{1}\right)=F\left(A_{2}\right)\). (g) Find an example in which \(A_{1} \neq F^{-1}\left(F\left(A_{1}\right)\right)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.