Chapter 3: Problem 16
(a) For \(k, n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N},\) show that if $$ n_{1} \equiv n_{2}(\bmod k) $$ and $$ m_{1}=m_{2}(\bmod k) $$ then $$ n_{1}+m_{1} \equiv n_{2}+m_{2}(\bmod k) $$ and $$ n_{1} \cdot m_{1} \equiv n_{2} \cdot m_{2}(\bmod k) $$ (b) Part (a) says that if we take two equivalence classes \([m]\) and \([n]\), then we can unambiguously define \([m]+[n]\) and \([m] \cdot[n]\). Pick any \(m_{1} \in[m]\) and any \(n_{1} \in[n],\) and define $$ [m]+[n]=\left[m_{1}+n_{1}\right] $$ and $$ [m] \cdot[n] \equiv\left[m_{1} \cdot n_{1}\right] $$ The definition is unambiguous since it doesn't matter which \(m_{1}\) and \(n_{1}\) we pick. Find the addition and multiplication tables for the equivalence classes of \(\equiv(\bmod 4)\) and \(\equiv(\bmod 5) .\) (Hint: For both \(\equiv(\bmod 4)\) and \(\equiv(\bmod 5),\) your answer should include $$ [0]+[0] \equiv[0],[0]+[1] \equiv[1],[0] \cdot[0] \equiv\\{0] $$ and $$ [1] \cdot[1] \equiv[1] $$ but, for \(\equiv(\bmod 4)\). $$ [2]+[2] \equiv[0] $$ whereas, that will be false for \(\equiv(\bmod 5) .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.