Chapter 2: Problem 16
The length of a clause is the number of literals in the clause. The length of a CNF formula is the sum of the length of its clauses. The number of excess literals in a CNF formula is the length of the formula minus the number of clauses in the formula. (a) Show that if an unsatisfiable set \(S\) of clauses contains only clauses of length 0 and 1 , it has a resolution refutation. (Hint: Prove the following: If \(S\) contains a clause of length 0 , it has [trivially] a resolution refutation. If, for some proposition letter \(p, S\) contains both \(p\) and \(\neg p,\) then \(S\) has a resolution refutation. Otherwise, \(S\) is satisfiable.) (b) Show that if a set \(\left\\{\lambda_{1} \vee \lambda_{2} \vee \ldots \vee \lambda_{k} \vee \lambda_{k+1}+\cup S(k \geq 1)\right.\) of clauses is un- satisfiable, so are \(\left\\{\lambda_{1} \vee \lambda_{2} \vee \lambda_{k}\right\\} \cup S\) and \(\left\\{\lambda_{k+1}\right\\} \cup S\). (Hint: For the first half, prove that if an interpretation \(I\) satisfies \(\left\\{\lambda_{1} \vee \lambda_{2} \vee \ldots \vee \lambda_{k}\right\\} \cup S,\) it also satisfies \(\left.\left\\{\lambda_{1} \vee \lambda_{2} \vee \cdots \vee \lambda_{k} \vee \lambda_{k+1}\right\\} \cup S_{.}\right)\) (c) Show that for \(k \geq 1,\) the number of excess literals in \(\left\\{\lambda_{1} \vee \lambda_{2} \vee \cdots \vee \lambda_{k}\right\\} \cup S\) and the number of excess literals in \(\left\\{\lambda_{k+1}\right\\} \cup S\) are both less than the number of excess literals in \(\left\\{\lambda_{1} \vee \lambda_{2} \vee \ldots \vee \lambda_{k} \vee \lambda_{k+1}\right\\} \cup S\). (d) A resolution derivation of a clause \(r_{k}\) from a set \(S\) of clauses is a sequence \(r_{0}, r_{1}, r_{2}, \ldots, r_{k}\) of clauses where each \(r_{l}\) is either an element of \(S\) or a resolvant of two previous \(r\) 's. (Thus, resolution refutation of \(S\) is just a resolution derivation of \(F\) from \(S .\) ) Show that if there is a resolution derivation of \(\lambda\) from \(S\) and a resolution refutation of \(S \cup\\{\lambda\\},\) then there is a resolution refutation of \(S .\) (e) Prove that if there is a resolution refutation \(\rho\) of \(\left\\{\lambda_{1} \vee \lambda_{2} \vee \ldots \vee \lambda_{k}\right\\} \cup S,\) then either (i) there is a resolution refutation of \(\left.\mid \lambda_{1} \vee \lambda_{2} \vee \cdots \vee \lambda_{k} \vee \lambda_{k+1}\right\\} \cup S\) or (ii) there is a resolution derivation of \(\lambda_{k+1}\) from \(\lambda_{1} \vee \lambda_{2} \vee \ldots \vee \lambda_{k} \vee \lambda_{k+1} \cup S\). (Hint: Prove this by induction on the length \(\rho\). You will have to add \(\lambda_{k+1}\) as a disjunct to some of the clauses in \(\rho\). It is not true in general that if \(S \models \lambda\), then there is a resolution derivation of \(\lambda\) from \(S .\) ) (f) Prove that resolution refutation is complete.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.