For any two integers \(m\) and \(n,\) we say \(m\) divides \(n\) if there is an
integer \(k\) such that \(n=\) \(m k\). (Many programming languages give easy ways
to say that, such as \(n \% m=0\) or \(n\) div \(m=0 .\) ) Define \(D i v(m, n)\) to
be \(m\) divides \(n\). Translate each of the following propositions and
quantified formulas into a clear English sentence. Label each as being true or
false, with the universe as the set \(\mathbb{Z}\).
(a) \(\operatorname{Div}(5,7)\)
(b) \(\operatorname{Div}(4,16)\)
(c) \(\operatorname{Div}(16,4)\)
(d) \(\operatorname{Div}(-8,0)\)
(e) \(\forall m(\forall n(\operatorname{Div}(m, n)))\)
(f) \(\forall n(\operatorname{Div}(1, n))\)
(g) \(\forall m(\operatorname{Div}(m, 0))\)
(h) \(\forall m(\forall n(\operatorname{Div}(m, n) \rightarrow
\operatorname{Div}(n, m)))\)
(i) \(\forall m(\forall n(\forall p((D i v(m, n) \wedge \operatorname{Div}(n,
p)) \rightarrow \operatorname{Div}(m, p))))\)
(j) \(\forall m(\forall n((D i v(m, n) \wedge \operatorname{Div}(n, m))
\rightarrow m=n))\)