Chapter 1: Problem 40
Challenge: Exactly where is the mistake in the following proof that all personal computers are the same brand? Let \(\mathcal{T}=\\{n \in \mathbb{N}: n \geq 1\) and in every set of \(n\) personal computers, all the personal computers are the same brand \(\\} .\) Prove by induction that for every natural number \(n\) such that \(n \geq 1\) is in \(T\). (Base step) \(1 \in T\), since, trivially, if a set of personal computers contains only one computer, then every (one) computer in the set has the same brand. (Inductive step) Suppose \(n \in T\). We need to show \(n+1 \in T\). So, let \(P\) be any set of \(n+1\) personal computers. Pick any computer \(c \in P ;\) we need to show that every computer in \(P\) is the same brand as \(c\). So, let \(d\) be any computer in \(P\). If \(d=c\), then, trivially, \(d\) and \(c\) are the same brand. Otherwise, \(c \in P-(d\\} .\) The set \(P-(d)\) contains \(n\) computers, so by inductive hypothesis, all the computers in \(P-(d]\) are the same brand. Furthermore, \(d \in P-\mid c\\},\) and. also by inductive hypothesis, all the computers in \(P-\\{c\\}\) are the same brand. Now, let \(e\) be a computer in both \(P-\mid c\\}\) and \(P-[d\\}\). Then, \(d\) is the same brand as \(e,\) and \(c\) is the same brand as \(e\). Therefore, \(d\) is the same brand as \(c\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.