Refer Figure 3.5 in the book.
From Figure 3.5 , the multiplicand will be passed to 32-bit ALU. In ALU the bits are checked and then passed to the product register. The Product register has the multiplier that is on the right half. Now, the control test will make the shift and write operations.
The multiplication of can be calculated as follows:
First, convert into binary:
Here 00010010 is the multiplier and 01100010 is the multiplicand
Iteration | Step | Multiplicand | Product | Multiplier |
0 | Initial Values | 110 010 | 000 000 | 001 010 |
1 | LSN=0, No operation | 110 010 | 000 000 | 001 010 |
Right Shift Product | 110 010 | 000 000 | 000 101 |
2 | Product=Product+Multiplicand | 110 010 | 110 010 | 000 101 |
Right Shit Multiplier | 110 010 | 011 001 | 000 010 |
3 | LSB=0 , No Operation | 110 010 | 011 001 | 000 010 |
Right Shit Multiplier | 110 010 | 001 100 | 100 001 |
4 | Product=Product+Multiplicand | 110 010 | 111 110 | 100 001 |
Right Shit Multiplier | 110 010 | 011 111 | 010 000 |
5 | LSB=0 , No Operation | 110 010 | 011 111 | 010 000 |
Right Shit Multiplier | 110 010 | 001 111 | 101 000 |
6 | LSB=0 , No Operation | 110 010 | 001 111 | 101 000 |
Right Shit Multiplier | 110 010 | 000 111 | 110 100 |
Now, rewriting the product in 32 bits format is 0000 0110 1110 0100.
Convert 0000 0110 1110 0100 to hexadecimal.
So, the product of is