Chapter 2: Problem 49
Suppose Ethernet physical addresses are chosen at random (using true random bits). (a) What is the probability that on a 1024-host network, two addresses will be the same? (b) What is the probability that the above event will occur on some one or more of \(2^{20}\) networks? (c) What is the probability that of the \(2^{30}\) hosts in all the networks of (b), some pair has the same address? Hint: The calculation for (a) and (c) is a variant of that used in solving the socalled Birthday Problem: Given \(N\) people, what is the probability that two of their birthdays (addresses) will be the same? The second person has probability \(1-\frac{1}{365}\) of having a different birthday from the first, the third has probability \(1-\frac{2}{365}\) of having a different birthday from the first two, and so on. The probability all birthdays are different is thus $$ \left(1-\frac{1}{365}\right) \times\left(1-\frac{2}{365}\right) \times \cdots \times\left(1-\frac{N-1}{365}\right) $$ which for smallish \(N\) is about $$ 1-\frac{1+2+\cdots+(N-1)}{365} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.