Chapter 7: Problem 13
Why is a packet that is received after its scheduled playout time considered lost?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 7: Problem 13
Why is a packet that is received after its scheduled playout time considered lost?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freea. Suppose we send into the Internet two IP datagrams, each carrying a different UDP segment. The first datagram has source IP address A1, destination IP address B, source port P1, and destination port T. The second datagram has source IP address A2, destination IP address B, source port P2, and destination port T. Suppose that A1 is different from A2 and that P1 is different from P2. Assuming that both datagrams reach their final destination, will the two UDP datagrams be received by the same socket? Why or why not? b. Suppose Alice, Bob, and Claire want to have an audio conference call using SIP and RTP. For Alice to send and receive RTP packets to and from Bob and Claire, is only one UDP socket sufficient (in addition to the socket needed for the SIP messages)? If yes, then how does Alice's SIP client distinguish between the RTP packets received from Bob and Claire?
True or false: a. If stored video is streamed directly from a Web server to a media player, then the application is using TCP as the underlying transport protocol. b. When using RTP, it is possible for a sender to change encoding in the middle of a session. c. All applications that use RTP must use port 87. d. If an RTP session has a separate audio and video stream for each sender, then the audio and video streams use the same SSRC. e. In differentiated services, while per-hop behavior defines differences in performance among classes, it does not mandate any particular mechanism for achieving these performances. f. Suppose Alice wants to establish an SIP session with Bob. In her INVITE message she includes the line: m=audio 48753 RTP/AVP 3 (AVP 3 denotes GSM audio). Alice has therefore indicated in this message that she wishes to send GSM audio. g. Referring to the preceding statement, Alice has indicated in her INVITE message that she will send audio to port 48753. h. SIP messages are typically sent between SIP entities using a default SIP port number. i. In order to maintain registration, SIP clients must periodically send REGISTER messages. j. SIP mandates that all SIP clients support G.711 audio encoding.
CDNs typically adopt one of two different server placement philosophies. Name and briefly describe these two philosophies.
Consider a DASH system for which there are \(N\) video versions (at \(N\) different rates and qualities) and \(N\) audio versions (at \(N\) different rates and versions). Suppose we want to allow the player to choose at any time any of the \(N\) video versions and any of the \(N\) audio versions. a. If we create files so that the audio is mixed in with the video, so server sends only one media stream at given time, how many files will the server need to store (each a different URL)? b. If the server instead sends the audio and video streams separately and has the client synchronize the streams, how many files will the server need to store?
Suppose that the WFQ scheduling policy is applied to a buffer that supports three classes, and suppose the weights are 0.5, 0.25, and 0.25 for the three classes. a. Suppose that each class has a large number of packets in the buffer. In what sequence might the three classes be served in order to achieve the WFQ weights? (For round robin scheduling, a natural sequence is 123123123 . . .). b. Suppose that classes 1 and 2 have a large number of packets in the buffer, and there are no class 3 packets in the buffer. In what sequence might the three classes be served in to achieve the WFQ weights?
What do you think about this solution?
We value your feedback to improve our textbook solutions.