Chapter 3: Problem 50
Consider a simplified TCP's AIMD algorithm where the congestion window size is measured in number of segments, not in bytes. In additive increase, the congestion window size increases by one segment in each RTT. In multiplicative decrease, the congestion window size decreases by half (if the result is not an integer, round down to the nearest integer). Suppose that two TCP connections, \(C_{1}\) and \(C_{2}\), share a single congested link of speed 30 segments per second. Assume that both \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) are in the congestion avoidance phase. Connection \(\mathrm{C}_{1}\) 's RTT is \(50 \mathrm{msec}\) and connection \(\mathrm{C}_{2}\) 's RTT is \(100 \mathrm{msec}\). Assume that when the data rate in the link exceeds the link's speed, all TCP connections experience data segment loss. a. If both \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) at time \(\mathrm{t}_{0}\) have a congestion window of 10 segments, what are their congestion window sizes after 1000 msec? b. In the long run, will these two connections get the same share of the bandwidth of the congested link? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.