Chapter 6: Problem 30
(PrimeNumbers) An integer is said to be prime if it is divisible by only 1 and itself. For example, 2,3,5 and 7 are prime, but 4,6,8 and 9 are not. a. Write a function that determines whether a number is prime. b. Use this function in a program that determines and prints all the prime numbers between 2 and 10,000 . How many of these numbers do you really have to test before being sure that you have found all the primes? c. Initially, you might think that \(n / 2\) is the upper limit for which you must test to see whether a number is prime, but you need only go as high as the square root of \(n\) Why? Rewrite the program, and run it both ways. Estimate the performance improvement.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.