Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You are given a strongly connected directed graph G=(V,E) with positive edge weights along with a particularv0V . Give an efficient algorithm for finding shortest paths between all pairs of nodes, with the one restriction that these paths must all pass throughv0 .

Short Answer

Expert verified

All Pairs Shortest Path Algorithm is used to find the shortest distance between all pairs of nodes in a graph.

Step by step solution

01

Floyd-Warshall Algorithm

The algorithm is used to compute the shortest distance between every pair of vertices in a weighted graph. A graph with all edges having a numerical weight is called a Weighted graph.

02

Shortest distance Algorithm

The algorithm to find the shortest path between i and j through a particular vertex between all pairs is:

forall(i,j)Edist(i,j,v0)=s(i,j)

Here,dist(i,j,v0) is the distance between vertices i and j with intermediate vertex v0.

The shortest path between all pairs of vertices (i,j)with the intermediate nodev0 is calculated as:

fori=1ton:forj=1ton:dist(i,j,v0)=mindist(i,v0,v0-1)+dist(v0,j,v0-1)+dist(i,j,v0-1)

Here, n is the number of vertices

Hence, an algorithm to find the shortest path between every node pair of a graph with one common intermediate node is obtained.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give an algorithm that takes as input a directed graph with positive edge lengths, and returns the length of the shortest cycle in the graph (if the graph is acyclic, it should say so). Your algorithm should take time at most O|V3|.

Section 4.5.2 describes a way of storing a complete binary tree of n nodes in an array indexed by 1, 2, K, n .

(a) Consider the node at position j of the array. Show that its parent is at position [j2]and its children are at 2 jand 2 j + 1 (if these numbers are n).

(b) What the corresponding indices when a complete d-ary tree is stored in an array?

Figure 4.16 shows pseudocode for a binary heap, modeled on an exposition by R.E. Tarjan. The heap is stored as an array , which is assumed to support two constant-time operations:

  • |h|, which returns the number of elements currently in the array;
  • h-1, which returns the position of an element within the array.

The latter can always be achieved by maintaining the values of h-1as an auxiliary array.

(c) Show that themakeheapprocedure takesO(n) time when called on a set of elements. What is the worst-case input? (Hint:Start by showing that the running time is at most 1=1nlog(ni)).

(d) What needs to be changed to adapt this pseudocode to d-ary heaps?

Suppose we want to run Dijkstra’s algorithm on a graph whose edge weights are integers in the range 0,1,........,W, where Wis a relatively small number.
(a) Show how Dijkstra’s algorithm can be made to run in time

O(W|V|+|E|)

(b) Show an alternative implementation that takes time just .

O((|V|+|E|)logW)

You are given a directed graph G(V,E)with (possibly negative) weighted edges, along with a specific node sVand a tree T=(V,E'),E'E. Give an algorithm that checks whether T is a shortest-path tree for G with starting point s . Your algorithm should run in linear time.

You are given a directed graph with (possibly negative) weighted edges, in which the shortest path between any two vertices is guaranteed to have at most edges. Give an algorithm that finds the shortest path between two vertices u and v in O(KE)time.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free