Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find necessary and sufficient conditions on the reals a and b under which the linear program

maxx+yax+by1x,y0

(a) Is infeasible.

(b) Is unbounded.

(c) Has a unique optimal solution.

Short Answer

Expert verified
  1. The solution is feasible in the origin(x,y)=(0,0)
  2. The linear program is unbounded for (a,b)0.
  3. Conditions for optimal solutionab ,a>0 , and b>0.

Step by step solution

01

Explain Linear program.

Linear program is used for optimization tasks that has constraints and the optimization criterion as linear functions. A linear program has the set of variables that needs to be assign with the real values to satisfy the linear inequalities and to minimize or maximize a given linear objective function.

02

Conditions for Infeasible linear program

(a)

The given linear program is never infeasible for any value of a,bas there is always a feasible solution that satisfy ax+by1. Also this solution can be feasible for origin (x,y)=(0,0).

03

Conditions for unbounded linear program

(b)

This linear program is unbounded for(a,b)0

This is because of the fact that if a0, then increase the value ofx and same goes for bandy . This will not violate our given constraints.

04

Conditions for a unique solution of linear program 

(c)

The finite optimal solution can be achieved if ab, a>0, andb>0 .

If a>b, then the optimal solution can be achieved at x=1b. Similarly, if a<b, then optimal can be found at x=1a.

But if a=b anda,b are positive such that x+y=1aachieve the optimum.

Hence, optimum exists and will be unique only ifa,b>0 anda is not equal to b.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Direct bipartite matching. We’ve seen how to find a maximum matching in a bipartite graph via reduction to the maximum flow problem. We now develop a direct algorithm.

Let G=(V1V2,E)be a bipartite graph (so each edge has one endpoint in V1and one endpoint in V2), and letMEbe a matching in the graph (that is, a set of edges that don’t touch). A vertex is said to be covered byMif it is the endpoint of one of the edges in M. An alternating path is a path of odd length that starts and ends with a non-covered vertex, and whose edges alternate between Mand E-M.

(a) In the bipartite graph below, a matching Mis shown in bold. Find an alternating path.


(b) Prove that a matchingMis maximal if and only if there does not exist an alternating path with respect to it.

(c) Design an algorithm that finds an alternating path inO(|V|+|E|)time using a variant of breadth-first search.

(d) Give a directO(|V|-|E|)algorithm for finding a maximal matching in a bipartite graph.

Consider the following generalization of the maximum flow problem.

You are given a directed network G=(V,E)with edge capacities {ce}. Instead of a single (s,t)pair, you are given multiple pairs (s1,t1),(s2,t2),,(sk,tk), where the siare sources of Gand tithe are sinks of G. You are also given kdemands d1,,dk. The goal is to find kflows f(1),,f(k)with the following properties:

  • f(i)is a valid flow fromSi toti .
  • For each edge e, the total flowfe(1)+fe(2)++fe(k) does not exceed the capacityce .
  • The size of each flowf(i) is at least the demand di.
  • The size of the total flow (the sum of the flows) is as large as possible.

How would you solve this problem?

Hall’s theorem. Returning to the matchmaking scenario of Section 7.3, suppose we have a bipartite graph with boys on the left and an equal number of girls on the right. Hall’s theorem says that there is a perfect matching if and only if the following condition holds: any subset sof boys is connected to at least |s|girls.

Prove this theorem. (Hint: The max-flow min-cut theorem should be helpful.)

An edge of a flow network is called critical if decreasing the capacity of this edge results in a decrease in the maximum flow. Give an efficient algorithm that finds a critical edge in a network

The pizza business in Little Town is split between two rivals, Tony and Joey. They are each investigating strategies to steal business away from the other. Joey is considering either lowering prices or cutting bigger slices. Tony is looking into starting up a line of gourmet pizzas, or offering outdoor seating, or giving free sodas at lunchtime. The effects of these various strategies are summarized in the following payoff matrix (entries are dozens of pizzas, Joey’s gain and Tony’s loss).




TONY




Gourmet

Seating

Freesoda

JOEY

Lower price

+2

0

-3


BiggerSlices

_1

-2

+1

For instance, if Joey reduces prices and Tony goes with the gourmet option, then Tony will lose 2 dozen pizzas worth of nosiness to Joey.

What is the value of this game, and what are the optimal strategies for Tony and Joey?

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free