Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hall’s theorem. Returning to the matchmaking scenario of Section 7.3, suppose we have a bipartite graph with boys on the left and an equal number of girls on the right. Hall’s theorem says that there is a perfect matching if and only if the following condition holds: any subset sof boys is connected to at least |s|girls.

Prove this theorem. (Hint: The max-flow min-cut theorem should be helpful.)

Short Answer

Expert verified

The Hall’s theorem is proved by the contradiction of perfect matching.

Step by step solution

01

Explain Bipartite matching

Bipartite matching checks for the perfect matches between the edges between the set of boys and girls. Perfect matching occurs if and only if the number of flows size equals the number of couples.

02

Prove the Hall’s Theorem.

Consider the bipartite graph G with a set A of boys and a set B of girls in equal number. The subset of boys and girls is denoted by s. Consider that the perfect matching exits, then XA, there exists a subset that is connected to at least |s|girls. For a contradiction, assume that there is no perfect matching.

Consider the modified graph G, equal to G. In Gadd a source vertex sconnected to every vertex in A , and a sink vertex t connected to every vertex in B. Let fbe the maximum flow in G. Since there is no perfect matching in G, f|A|1. By the max-flow min-cut theorem, the minimum cut Xmust have fewer than |A|1cut edges.

Every one of the vertices in AXcontributes at least one cut edge to inx, NA|<|Aviolate the Hall’s condition.

Therefore, by the proof by contradiction, the theorem is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a satisfiable system of linear inequalities

a11x1+···+a1nxnb1:am1x1+···+amnxnbm

we describe the inequality as forced-equal if it is satisfied with equality by every solution x = (x1,...,xn)of the system. Equivalently,Piajixibj is not forced-equal if there exists an x that satisfies the whole system and such that Piajixibj.

For example, in

x1+x22-x1-x2-2x11-x20

Moe is deciding how much Regular Duff beer and how much Duff Strong beer to order each week. Regular Duff costs Moe \(1 per pint and he sells it at \)2 per pint; Duff Strong costs Moe $1.50 per pint and he sells it at per pint. However, as part of a complicated marketing scam, the Duff company will only sell a pint of Duff Strong for each two pints or more of Regular Duff that Moe buys. Furthermore, due to past events that are better left untold, Duff will not sell Moe more than 3,000 pints per week. Moe knows that he can sell however much beer he has. Formulate a linear program for deciding how much Regular Duff and how much Duff Strong to buy, so as to maximize Moe’s profit. Solve the program geometrically.

The dual of maximum flow. Consider the following network with edge capacities

(a) Write the problem of finding the maximum flow from StoTas a linear program.

(b) Write down the dual of this linear program. There should be a dual variable for each edge of the network and for each vertex other than S,T.

Now we’ll solve the same problem in full generality. Recall the linear program for a general maximum flow problem (Section 7.2).

(c) Write down the dual of this general flow LP, using a variableyefor each edge and xufor each vertexus,t.

(d) Show that any solution to the general dual LP must satisfy the following property: for any directed path from in the network, the sum of the yevalues along the path must be at least 1.

(e) What are the intuitive meanings of the dual variables? Show that anystcut in the network can be translated into a dual feasible solution whose cost is exactly the capacity of that cut.

Find the value of the game specified by the following payoff matrix.

00110121111110011203111103210211

(Hint: Consider the mixed strategies (13,0,0,12,16,0,0,0)and )(23,0,0,13))

Write the dual to the following linear program.

maxx+y2x+y3x+3y5x,y0

Find the optimal solutions to both primal and dual LPs

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free