Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Duckwheat is produced in Kansas and Mexico and consumed in New York and California. Kansas produces 15 shnupells of duckwheat and Mexico 8. Meanwhile, New York consumes 10 shnupells and California 13. The transportation costs per shnupell are \(4 from Mexico to New York, \)1 from Mexico to California, \(2 from Kansas to New York, and \)3 and from Kansas to California. Write a linear program that decides the amounts of duckwheat (in shnupells and fractions of a shnupell) to be transported from each producer to each consumer, so as to minimize the overall transportation cost

Short Answer

Expert verified

Answer:

The minimum transportation cost: 4MN+MC+2KN+3KC.

MN+KN=10

MC+KC=13

MN+MC=8

KN+KC=15

MN≥0, MC≥0, KN≥0, KC≥0 will be therequired linear program

Step by step solution

01

Defining the variables

For our convenience, let us denote each country by its first alphabet:

M=Mexico

K=Kansas

N=New York

C=California

Let the number of shnupells shipped from Kansas to New York be “KN” and its transportation cost is $2.So, the transportation cost will become 2KN.

Let the number of shnupells shipped from Kansas to California be “KC” and its transportation cost is $3.So, the transportation cost will become 3KC.

Let the number of shnupells shipped from Mexico to New York be “MN” and its transportation cost is $4.So, the transportation cost will become 4MN.

Let the number of shnupells shipped from Mexico to California be “MC” and its transportation cost is $1.So, transportation cost will become 1MC.

02

Defining the constraints which will be the desired Linear Program

The constraints can be formed as follows:

The minimum transportation cost: 4MN+MC+2KN+3KC.

MN+KN=10

MC+KC=13

MN+MC=8

KN+KC=15

MN≥0, MC≥0, KN≥0, KC≥0 will be therequired linear program.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a satisfiable system of linear inequalities

a11x1+···+a1nxnb1:am1x1+···+amnxnbm

we describe the inequality as forced-equal if it is satisfied with equality by every solution x = (x1,...,xn)of the system. Equivalently,Piajixibj is not forced-equal if there exists an x that satisfies the whole system and such that Piajixibj.

For example, in

x1+x22-x1-x2-2x11-x20

A cargo plane can carry a maximum weight of 100 tons and a maximum volume of 60 cubic meters. There are three materials to be transported, and the cargo company may choose to carry any amount of each, up to the maximum available limits given below.

  • Material 1 has density 2tons/cubicmeters, maximum available amount 40 cubic meters, and revenue \(1,000 per cubic meter.
  • Material 2 has density 1ton/cubicmeters,maximum available amount 30 cubic meters, and revenue \)1,200 per cubic meter.
  • Material 3 has density 3tons/cubicmeters, maximum available amount 20 cubic meters, and revenue $12,000 per cubic meter.

Write a linear program that optimizes revenue within the constraints.

You are given the following points in the plane:

(1,3),(2,5),(3,7),(5,11),(7,14),(8,15),(10,19)

.You want to find a lineax+by=c that approximately passes through these points (no line is a perfect fit). Write a linear program (you don’t need to solve it) to find the line that minimizes the maximum absolute error,max1i7|axi+byic|

Give an example of a linear program in two variables whose feasible region is infinite, but such that there is an optimum solution of bounded cost.

Question: A linear program for shortest path. Suppose we want to compute the shortest path from node s to node t in a directed graph with edge lengths le>0.

a) Show that this is equivalent to finding an s - tflow fthat minimizes elefesubject to size (f) = 1. There are no capacity constraints.

b) Write the shortest path problem as a linear program.

c) Show that the dual LP can be written as

role="math" localid="1659250472483" maxxs-xtxu-xvluvforall(u,v)E

d) An interpretation for the dual is given in the box on page 223. Why isn’t our dual LP identical to the one on that page?

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free