Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Duckwheat is produced in Kansas and Mexico and consumed in New York and California. Kansas produces 15 shnupells of duckwheat and Mexico 8. Meanwhile, New York consumes 10 shnupells and California 13. The transportation costs per shnupell are \(4 from Mexico to New York, \)1 from Mexico to California, \(2 from Kansas to New York, and \)3 and from Kansas to California. Write a linear program that decides the amounts of duckwheat (in shnupells and fractions of a shnupell) to be transported from each producer to each consumer, so as to minimize the overall transportation cost

Short Answer

Expert verified

Answer:

The minimum transportation cost: 4MN+MC+2KN+3KC.

MN+KN=10

MC+KC=13

MN+MC=8

KN+KC=15

MN≥0, MC≥0, KN≥0, KC≥0 will be therequired linear program

Step by step solution

01

Defining the variables

For our convenience, let us denote each country by its first alphabet:

M=Mexico

K=Kansas

N=New York

C=California

Let the number of shnupells shipped from Kansas to New York be “KN” and its transportation cost is $2.So, the transportation cost will become 2KN.

Let the number of shnupells shipped from Kansas to California be “KC” and its transportation cost is $3.So, the transportation cost will become 3KC.

Let the number of shnupells shipped from Mexico to New York be “MN” and its transportation cost is $4.So, the transportation cost will become 4MN.

Let the number of shnupells shipped from Mexico to California be “MC” and its transportation cost is $1.So, transportation cost will become 1MC.

02

Defining the constraints which will be the desired Linear Program

The constraints can be formed as follows:

The minimum transportation cost: 4MN+MC+2KN+3KC.

MN+KN=10

MC+KC=13

MN+MC=8

KN+KC=15

MN≥0, MC≥0, KN≥0, KC≥0 will be therequired linear program.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The dual of maximum flow. Consider the following network with edge capacities

(a) Write the problem of finding the maximum flow from StoTas a linear program.

(b) Write down the dual of this linear program. There should be a dual variable for each edge of the network and for each vertex other than S,T.

Now we’ll solve the same problem in full generality. Recall the linear program for a general maximum flow problem (Section 7.2).

(c) Write down the dual of this general flow LP, using a variableyefor each edge and xufor each vertexus,t.

(d) Show that any solution to the general dual LP must satisfy the following property: for any directed path from in the network, the sum of the yevalues along the path must be at least 1.

(e) What are the intuitive meanings of the dual variables? Show that anystcut in the network can be translated into a dual feasible solution whose cost is exactly the capacity of that cut.

The Canine Products company offers two dog foods, Frisky Pup and Husky Hound, that are made from a blend of cereal and meat. A package of Frisky Pup requires 1 pound of cereal and 1.5pounds of meat, and sells for \(7. A package of Husky Hound uses 2 pounds of cereal and 1 pound of meat, and sells for \)6. Raw cereal costs\(1per pound and raw meat costs\)2per pound. It also costslocalid="1658981348093" \(1.40to package the Frisky Pup and localid="1658981352345" \)0.60to package the Husky Hound. A total of localid="1658981356694" 240,000pounds of cereal and pounds of meat are available each month. The only production bottleneck is that the factory can only package 110,000bags of Frisky Pup per month. Needless to say, management would like to maximize profit.

(a) Formulate the problem as a linear program in two variables.

(b) Graph the feasible region, give the coordinates of every vertex, and circle the vertex maximizing profit. What is the maximum profit possible?

Consider the following network (the numbers are edge capacities).

(a)Find the maximum flow fand a minimum cut.

(b)Draw the residual graphGf (along with its edge capacities). In this residual network, mark the vertices reachable fromS and the vertices from whichT is reachable.

(c)An edge of a network is called a bottleneck edge if increasing its capacity results in an increase in the maximum flow. List all bottleneck edges in the above network.

(d)Give a very simple example (containing at most four nodes) of a network which has no bottleneck edges.

(e)Give an efficient algorithm to identify all bottleneck edges in a network.

A quadratic programming problem seeks to maximize a quadratic objective function (with terms like 3x12or5x1x2) subject to a set of linear constraints. Give an example of a quadratic program in two variables x1, x2 such that the feasible region is nonempty and bounded, and yet none of the vertices of this region optimize the (quadratic) objective.

In a particular network G = (V, E) whose edges have integer capacities ce, we have already found the maximum flow f from node to node t. However, we now find out that one of the capacity values we used was wrong: for edge (u, v) we used cuv whereas it should have been cuv. -1 This is unfortunate because the flow f uses that particular edge at full capacity: f = c.

We could redo the flow computation from scratch, but there’s a faster way. Show how a new optimal flow can be computed inO(|V|+|E|) time.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free