Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Matching pennies. In this simple two-player game, the players (call them Rand C) each choose an outcome, heads or tails. If both outcomes are equal, Cgives a dollar to R; if the outcomes are different, Rgives a dollar to C.

(a) Represent the payoffs by a2×2 matrix.

(b) What is the value of this game, and what are the optimal strategies for the two players?

Short Answer

Expert verified

The value of the game is0 and the optimal strategy of both the player will be equal i.e., 12.

Step by step solution

01

Represent the payoffs by a matrix.

(a)It is given that forR to win, the two coins must have same outcome, i.e., either both heads or both tails.

The above condition can be represented as:

H

T

H

+1

-1

T

-1

+1

The matrix represents the moneyR got by game.

H=Head,T=Tail

+1indicates thatR got a dollar whereas-1 shows thatC got a dollar.

02

Calculate the value of this game and the optimal strategies for the two players

(b)

Let, Probability of Rto get head and tail be given asX1and X2.

And, Probability of Cto get head and tail be given as y1and y2.

Max:z: Min:w

zx1x2       zx1+x2    x1+x2=1        x1,x2>0 ​​   

wy1y2wy1+y2y1+y2=1y1,y2>0

The value of this game is0 .

Therefore, the optimal strategy of both the player is equal to i.e., 12.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Moe is deciding how much Regular Duff beer and how much Duff Strong beer to order each week. Regular Duff costs Moe \(1 per pint and he sells it at \)2 per pint; Duff Strong costs Moe $1.50 per pint and he sells it at per pint. However, as part of a complicated marketing scam, the Duff company will only sell a pint of Duff Strong for each two pints or more of Regular Duff that Moe buys. Furthermore, due to past events that are better left untold, Duff will not sell Moe more than 3,000 pints per week. Moe knows that he can sell however much beer he has. Formulate a linear program for deciding how much Regular Duff and how much Duff Strong to buy, so as to maximize Moe’s profit. Solve the program geometrically.

The Canine Products company offers two dog foods, Frisky Pup and Husky Hound, that are made from a blend of cereal and meat. A package of Frisky Pup requires 1 pound of cereal and 1.5pounds of meat, and sells for \(7. A package of Husky Hound uses 2 pounds of cereal and 1 pound of meat, and sells for \)6. Raw cereal costs\(1per pound and raw meat costs\)2per pound. It also costslocalid="1658981348093" \(1.40to package the Frisky Pup and localid="1658981352345" \)0.60to package the Husky Hound. A total of localid="1658981356694" 240,000pounds of cereal and pounds of meat are available each month. The only production bottleneck is that the factory can only package 110,000bags of Frisky Pup per month. Needless to say, management would like to maximize profit.

(a) Formulate the problem as a linear program in two variables.

(b) Graph the feasible region, give the coordinates of every vertex, and circle the vertex maximizing profit. What is the maximum profit possible?

A vertex cover of an undirected graph G = (V,E) is a subset of the vertices which touches every edge—that is, a subset SVsuch that for each edge {U,V}E, one or both of u, v are in S. Show that the problem of finding the minimum vertex cover in a bipartite graph reduces to maximum flow. (Hint: Can you relate this problem to the minimum cut in an appropriate network?)

Write the dual to the following linear program.

maxx+y2x+y3x+3y5x,y0

Find the optimal solutions to both primal and dual LPs

A cargo plane can carry a maximum weight of 100 tons and a maximum volume of 60 cubic meters. There are three materials to be transported, and the cargo company may choose to carry any amount of each, up to the maximum available limits given below.

  • Material 1 has density 2tons/cubicmeters, maximum available amount 40 cubic meters, and revenue \(1,000 per cubic meter.
  • Material 2 has density 1ton/cubicmeters,maximum available amount 30 cubic meters, and revenue \)1,200 per cubic meter.
  • Material 3 has density 3tons/cubicmeters, maximum available amount 20 cubic meters, and revenue $12,000 per cubic meter.

Write a linear program that optimizes revenue within the constraints.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free