Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exon chaining.Each gene corresponds to a subregion of the overall genome (the DNA sequence); however, part of this region might be “junk DNA.” Frequently, a gene consists of several pieces called exons, which are separated by junk fragments called introns. This complicates the process of identifying genes in a newly sequenced genome.

Suppose we have a new DNA sequence and we want to check whether a certain gene (a string) is present in it. Because we cannot hope that the gene will be a contiguous subsequence, we look for partial matches—fragments of the DNA that are also present in the gene (actually, even these partial matches will be approximate, not perfect). We then attempt to assemble these fragments.

Let x 1Kndenote the DNA sequence. Each partial match can be represented by a triple li,ri,wi, where xliKriis the fragment and is a weight

representing the strength of the match (it might be a local alignment score or some other statistical quantity). Many of these potential matches could be false, so the goal is to find a subset of the triples that are consistent (nonoverlapping) and have a maximum total weight.

Show how to do this efficiently.

Short Answer

Expert verified

Dynamic programming solves the problem in On

Step by step solution

01

Step 1:Explain Exon Chaining

The DNA sequence or genome is written asx1Kn

Each partial matching given represents the starting and the weight of the match.

From these given sets of intervals, the maximum chain of intervals in required.

The greedy solution to this problem repeats the process of taking the chain with the highest scores first and then the largest left in the range until no more chains can be taken. Then sum the taken chains to get the maximum score.

But by constructing a graph, this problem can be solved in Ontime complexity.

02

Step 2:Give Algorithm

Algorithm is as follows,

With a graph GV,E, the algorithm is given as follows:

(G, n)

for i= 1 to 2n

resi=0

for i = 1 to 2n

if viin G corresponds to right end l

jileft end index of vertex for l

wi-weight

resj=maxresj+wi,resj-1

else

resi=resi-1

return res2n

03

Explain the algorithm

Explanation:

The Exon chaining problem can be solved using dynamic programming in a graph.

And that same approach is provided above.

The problem for n interval can be solved using 2nvertices in graph.

Assume that the set of left and right interval ends is sorted into ascending order.

And all positions are definite. This forms an ordered array of vertices.

There are 3n-1edges in the graph. In the algorithm, residenotes the length of the longest path ending at vertex vi in the graph.

Therefore the final solution is res2n

Thus, dynamic programming solves the problem in O (n)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the following 3-PARTITION problem. Given integersa1,...,an, we want to determine whether it is possible to partition of {1,...,n} into three disjoint subsets I,J,Ksuch that

aiiI=ajjJ=akkk=13aii1 .

For example, for input(1,2,3,4,4,5,8) the answer is yes, because there is the partition(1,8),(4,5),(2,3,4). On the other hand, for input(2,2,3,5) the answer is no. Devise and analyze a dynamic programming algorithm3-PARTITION for that runs in time polynomial in n and in Σiai.

The garage sale problem (courtesy of Professor Lofti Zadeh). On a given Sunday morning, there are n garage sales going on, g1,g2,g3............gn. For each garage sale gj, you have an estimate of its value to you, vj. For any two garage sales you have an estimate of the transportation cost dijof getting from gito gj. You are also given the costs d0jand dj0of going between your home and each garage sale. You want to find a tour of a subset of the given garage sales, starting and ending at home, that maximizes your total benefit minus your total transportation costs. Give an algorithm that solves this problem in time O(n22n).

(Hint: This is closely related to the traveling salesman problem.)

Here is yet another variation on the change-making problem (Exercise 6.17). Given an unlimited supply of coins of denominations x1,x2,x3.........xnwe wish to make change for a value v using at most k coins; that is, we wish to find a set ofkcoins whose total value is v. This might not be possible: for instance, if the denominations are 5 and 10 and k=6, then we can make change for 55 but not for 65. Give an efficient dynamic-programming algorithm for the following problem. Input: ; x1,x2,x3.........xn;k;v.Question: Is it possible to make change for v using at most k coins, of denominations x1,x2,x3.........xn?

Yuckdonald’s is considering opening a series of restaurant along Quaint Valley Highway(QVH). The n possible locations are along a straight line, and the distances of these locations from the start of QVH are, in miles and in increasing order,m1,m22,....,mn.. The constraints are as follows:

At each location, Yuckdonald may open at most one restaurant. The expected profit from opening a restaurant at location i is given aspi, wherepi>0andi=1,2,,n.

Any two restaurants should be at least k miles apart, where k is a positive integer.

Give an efficient algorithm to compute the maximum expected total profit subject to the given constraints.

A mission-critical production system has n stages that have to be performed sequentially; stage i is performed by machine Mi. Each machine Mi has a probability riof functioning reliably and a probability 1-riof failing (and the failures are independent). Therefore, if we implement each stage with a single machine, the probability that the whole system works is r1·r2···rn. To improve this probability we add redundancy, by having mi copies of the machine Mi that performs stage i. The probability that all mi copies fail simultaneously is only (1-ri)mi,so the probability that stage i is completed correctly is 1 − (1-ri)mi, and the probability that the whole system works isΠni=1(1-1-rimi).Each machine has a cost ci, and there is a total budget to buy machines. (Assume that B and ciare positive integers.) Given the probabilities r1·r2···rn, the costsc1,...,cn, and the budget find the redundanciesm1,...,mn that are within the available budget and that maximize the probability that the system works correctly.

See all solutions

Recommended explanations on Computer Science Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free